Partial upgrading of bitumen with supercritical water— liquid products characteristics, gas composition and coke morphology

The study aimed to investigate the partial upgrading of bitumen in the absence of water (non-water) and the presence of supercritical water (SCW). Partial upgrading experiments were conducted at the target temperature of 420 °C, with the reaction time varying from zero to 60 min in a batch reactor....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercritical fluids Vol. 211; p. 106319
Main Authors Bagherzadeh, Hadi, Nath, Devjyoti, Bin Dahbag, Mabkhot, Hassanzadeh, Hassan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The study aimed to investigate the partial upgrading of bitumen in the absence of water (non-water) and the presence of supercritical water (SCW). Partial upgrading experiments were conducted at the target temperature of 420 °C, with the reaction time varying from zero to 60 min in a batch reactor. The liquid products were analyzed for density, viscosity, composition, total acid number (TAN), olefin content, and elemental analysis. The gas composition and morphology of solid products were also studied. The experimental results revealed that while partial upgrading of bitumen with SCW could accelerate improvement in oil quality, particularly in terms of API and viscosity, it concurrently led to elevated gas and coke formation levels. Moreover, the difference in the distribution of oil fractions between the two environments (absence and presence of SCW) tends to diminish with an extended residence time. Additionally, as the residence time increases, the efficiency of TAN reduction under SCW conditions is less pronounced compared to the non-water conditions. Liquid products obtained in an SCW environment exhibited higher olefin content (between 3 and 4 wt %) compared to non-water conditions (between 1.8 and 2.7 wt %). In both environments, the olefin content was initially increased up to a residence time of 20 min and then decreased. Regarding heteroatoms, the sulphur (S) and nitrogen (N) contents decreased up to 36 % and 72 %, respectively, while a greater reduction was observed in the presence of SCW. More non-hydrocarbon gases (H2S, CO2 and CO) were produced in the presence of SCW. SEM images showed that an extended residence time led to a shift in coke morphology towards a more uniform and compact structure, regardless of the upgrading environment. However, the porous structures of coke samples obtained under SCW are distinguished from those formed without water, which is attributed to the phase inversion of precursors. The findings of this study confirm that SCW plays a beneficial role as a solvent in the partial upgrading of bitumen, expediting the process. However, the increased level of coke formation and olefin contents suggest that it may not function effectively as a hydrogen donor in the process. [Display omitted] •Bitumen partial upgrading was investigated experimentally.•Experiments were conducted under no-water and supercritical water (SCW).•Higher API and lower viscosity oil are associated with increased coke and gas.•SCW serves as a solvent, expediting the partial upgrading process.•High coke formation & olefin content imply SCW may not be efficient H2 donor.
ISSN:0896-8446
1872-8162
DOI:10.1016/j.supflu.2024.106319