Rotundity and monotonicity properties of selected Cesàro function spaces

We study rotundity, strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in some classes of Cesàro function spaces. We present full criteria of these properties in the Cesà ro–Orlicz function spaces C e s φ (under some mild assumptions on the Orlicz function φ )...

Full description

Saved in:
Bibliographic Details
Published inPositivity : an international journal devoted to the theory and applications of positivity in analysis Vol. 22; no. 1; pp. 357 - 377
Main Authors Kiwerski, Tomasz, Kolwicz, Paweł
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study rotundity, strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in some classes of Cesàro function spaces. We present full criteria of these properties in the Cesà ro–Orlicz function spaces C e s φ (under some mild assumptions on the Orlicz function φ ). Next, we prove a characterization of strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in the Cesàro–Lorentz function spaces C Λ ϕ . We also show that the space C Λ ϕ is never rotund. Finally, we will prove that Cesàro–Marcinkiewicz function space C M ϕ ( ∗ ) is neither strictly monotone nor order continuous for any quasi-concave function ϕ .
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-017-0515-8