Development of an advanced multifunctional portable water purifier

A novel approach to fabricate an efficient portable water purification device was tested. The polyacrylonitrile/chitosan (PAN–CTN) and polyacrylonitrile/biochar (PAN–BC) composite membranes were made through electrospinning, and laccase was immobilized on PAN–BC membrane (PAN–BC–LAC). Three layers o...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology for environmental engineering Vol. 4; no. 1; pp. 1 - 6
Main Authors Taheran, M., Kumar, P., Naghdi, M., Brar, S. K., Knystautas, E. J., Verma, M., Surampalli, R. Y.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel approach to fabricate an efficient portable water purification device was tested. The polyacrylonitrile/chitosan (PAN–CTN) and polyacrylonitrile/biochar (PAN–BC) composite membranes were made through electrospinning, and laccase was immobilized on PAN–BC membrane (PAN–BC–LAC). Three layers of composite membrane (PAN–CTN, PAN–BC–LAC, and PAN–BC) were placed in a series for purification of water measured in terms of microorganisms, micropollutants, and turbidity. The system provided around 83% of micropollutant removal, 99% removal of microorganisms, and up to 77% of turbidity reduction within < 5 min of the contact time. This device does not need an energy source for functioning and can prevent using plastic water bottles for activities in remote areas.
ISSN:2365-6379
2365-6387
DOI:10.1007/s41204-019-0054-6