Highly selective electrocatalytic Cl− oxidation reaction by oxygen-modified cobalt nanoparticles immobilized carbon nanofibers for coupling with brine water remediation and H2 production
Combining the H 2 production with brine remediation is regarded as a sustainable approach to achieving clean H 2 energy. However, designing stable Cl − oxidation reaction (COR) electrocatalyst is the key to realize this route. Herein, a type of oxygen-modified Co nanoparticles anchored graphitic car...
Saved in:
Published in | Nano research Vol. 14; no. 5; pp. 1443 - 1449 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Combining the H
2
production with brine remediation is regarded as a sustainable approach to achieving clean H
2
energy. However, designing stable Cl
−
oxidation reaction (COR) electrocatalyst is the key to realize this route. Herein, a type of oxygen-modified Co nanoparticles anchored graphitic carbon nanofibers catalyst (Co/GCFs) was synthesized through a two-step strategy of adsorption and pyrolysis. The Co/GCFs-2.4 exhibits high selectivity and stability for COR at neutral electrolyte. It is worth noting that unlike the water oxidation, the chemical valence of cobalt has not changed during the COR. Further results demonstrated that the oxygen-modified Co nanoparticles provide active sites for selective COR, meanwhile, the graphitic carbon gives rise to strong catalytic stability. Thanks to the superior COR and H
2
production activity of Co/GCFs-2.4, a two-electrode brine electrocatalysis system employing Co/GCFs-2.4 as both cathode and anode for H
2
production exhibited robust stability, efficient and high Faraday efficiency (98%-100%). We propose that this work provides a novel strategy for designing efficient and stable catalysts with electrocatalytic COR and HER activities at neutral brine water for practically coupling with H
2
production by water electrolysis and brine water remediation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-020-3200-3 |