Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these allo...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 472; no. 1-2; pp. 247 - 251
Main Authors SANTOS, Sydney F, HUOT, Jacques
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier 20.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr1.2(FeV)x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr1.2(FeV)0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2008.04.062