bFGF activates endothelial Ca2+-activated K+ channels involving G-proteins and tyrosine kinases
Activation of Ca2+-activated K+ channels (BK(Ca)) has been shown to be an important step in the basic fibroblast growth factor (bFGF)-induced proliferation of endothelial cells. In this study, we investigate the signaling cascades of BK(Ca) modulation by bFGF. Using the patch-clamp technique, bFGF (...
Saved in:
Published in | Vascular pharmacology Vol. 41; no. 6; pp. 181 - 186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Activation of Ca2+-activated K+ channels (BK(Ca)) has been shown to be an important step in the basic fibroblast growth factor (bFGF)-induced proliferation of endothelial cells. In this study, we investigate the signaling cascades of BK(Ca) modulation by bFGF. Using the patch-clamp technique, bFGF (50 ng/ml) significantly increased the BK(Ca) open-state probability in cultured endothelial cells derived from human coronary arteries after 6 min (n=26, p<0.01), which lasted up the whole recording time of 60 min. After preincubation with pertussis toxin (100 ng/ml), bFGF superfusion did not cause a significant increase of BK(Ca) activity until 25 min had passed. When genistein was supplemented to the bath solution, a significant activation of BK(Ca) by bFGF was observed during a time interval of 6-20 min (n=17, p<0.01). In contrast, the addition of the inactive analogue daidzein did not change bFGF-induced activation of the BK(Ca). In conclusion, the results of the present study indicate that the early activation of the BK(Ca) by bFGF is mediated by G-protein-dependent mechanisms, whereas the later effect is due to a tyrosine kinase-dependent signaling pathway. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1537-1891 |
DOI: | 10.1016/j.vph.2004.10.003 |