Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia

Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleu...

Full description

Saved in:
Bibliographic Details
Published inStem cell reviews and reports
Main Authors Lee, Wei, Lin, Syuan-Ling, Chiang, Chih-Sheng, Chen, Jui-Yu, Chieng, Wee-Wei, Huang, Shu-Rou, Chang, Ting-Yu, Linju Yen, B, Hung, Mien-Chie, Chang, Kuan-Cheng, Lee, Hsu-Tung, Jeng, Long-Bin, Shyu, Woei-Cherng
Format Journal Article
LanguageEnglish
Published United States 12.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2629-3269
2629-3277
2629-3277
DOI:10.1007/s12015-024-10774-8