MicroRNA-204-5p Attenuates Oxidative Stress, Apoptosis and Inflammation by Targeting TXNIP in Diabetic Cataract

Diabetic cataract (DC) is a major cause of blindness in diabetic patients and it is characterized by early onset and rapid progression. MiR-204-5p was previously identified as one of the top five down-regulated miRNAs in human DC lens tissues. We aimed to determine the expression of miR-204-5p in hu...

Full description

Saved in:
Bibliographic Details
Published inBiochemical genetics
Main Authors Cao, Xiang, Jiang, Zhixin, Bu, Xiaofei, Li, Qingyu, Tian, Ye, Xu, Zijiao, Zhang, Boyang, Yuan, Xiaoyong
Format Journal Article
LanguageEnglish
Published United States 19.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diabetic cataract (DC) is a major cause of blindness in diabetic patients and it is characterized by early onset and rapid progression. MiR-204-5p was previously identified as one of the top five down-regulated miRNAs in human DC lens tissues. We aimed to determine the expression of miR-204-5p in human lens epithelial cells (HLECs) and explore its effects and mechanisms in regulating the progression of DC. The expression of miR-204-5p in the anterior capsules of DC patients and HLECs was examined by RT-qPCR. Bioinformatics tools were then used to identify the potential target of miR-204-5p. The relationship between miR-204-5p and the target gene was confirmed through a dual luciferase reporter assay. Additionally, the regulatory mechanism of oxidative stress, apoptosis, and inflammation in DC was investigated by overexpressing miR-204-5p using miR-204-5p agomir. The expression of miR-204-5p was downregulated in the anterior capsules of DC patients and HLECs. Overexpression of miR-204-5p reduced ROS levels, pro-apoptosis genes (Bid, Bax, caspase-3), and IL-1β production in HG-treated HLECs. TXNIP was the direct target of miR-204-5p by dual luciferase reporter assay. Therefore, this study demonstrated that miR-204-5p effectively reduced oxidative damage, apoptosis, and inflammation in HLECs under HG conditions by targeting TXNIP. Targeting miR-204-5p could be a promising therapeutic strategy for the potential treatment of DC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2928
1573-4927
1573-4927
DOI:10.1007/s10528-024-10863-w