Regulating distance to the screen while engaging in difficult tasks

Regulation of distance to the screen (i.e., head-to-screen distance, fluctuation of head-to-screen distance) has been proved to reflect the cognitive engagement of the reader. However, it is still not clear (a) whether regulation of distance to the screen can be a potential parameter to infer high c...

Full description

Saved in:
Bibliographic Details
Published inFrontline learning research Vol. 8; no. 6; pp. 59 - 76
Main Authors Zhao, Fang, Gaschler, Robert, Schnotz, Wolfgang, Wagner, Inga
Format Journal Article
LanguageEnglish
Published European Association for Research on Learning and Instruction 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regulation of distance to the screen (i.e., head-to-screen distance, fluctuation of head-to-screen distance) has been proved to reflect the cognitive engagement of the reader. However, it is still not clear (a) whether regulation of distance to the screen can be a potential parameter to infer high cognitive load and (b) whether it can predict the upcoming answer accuracy. Configuring tablets or other learning devices in a way that distance to the screen can be analyzed by the learning software is in close reach. The software might use the measure as a person-specific indicator of need for extra scaffolding. In order to better gauge this potential, we analyzed eye-tracking data of children (N = 144, Mage = 13 years, SD = 3.2 years) engaging in multimedia learning, as distance to the screen is estimated as a by-product of eye tracking. Children were told to maintain a still seated posture while reading and answering questions at three difficulty levels (i.e., easy vs. medium vs. difficult). Results yielded that task difficulty influences how well the distance to the screen can be regulated, supporting that regulation of distance to the screen is a promising measure. Closer head-to-screen distance and larger fluctuation of head-to-screen distance can reflect that participants are engaging in a challenging task. Only large fluctuation of head-to-screen distance can predict the future incorrect answers. The link between distance to the screen and processing of cognitive task can obtrusively embody reader’s cognitive states during system usage, which can support adaptive learning and testing.
ISSN:2295-3159
2295-3159
DOI:10.14786/flr.v8i6.663