Mixed-dimensional modeling of delamination in rare earth-barium-copper-oxide coated conductors composed of laminated high-aspect-ratio thin films

Rare earth-barium-copper-oxide (REBCO) coated conductors are promising conductors for high energy, high field and high temperature superconducting applications. In the case of epoxy-impregnated REBCO superconducting coils, however, excessive transverse stresses generated from winding, cooling, and L...

Full description

Saved in:
Bibliographic Details
Published inSuperconductor science & technology Vol. 31; no. 7; pp. 74004 - 74019
Main Authors Gao, Peifeng, Chan, Wan-Kan, Wang, Xingzhe, Schwartz, Justin
Format Journal Article
LanguageEnglish
Published IOP Publishing 13.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rare earth-barium-copper-oxide (REBCO) coated conductors are promising conductors for high energy, high field and high temperature superconducting applications. In the case of epoxy-impregnated REBCO superconducting coils, however, excessive transverse stresses generated from winding, cooling, and Lorentz forces on the REBCO conductors can cause delamination, resulting in reduction in the load-carrying capacity as well as significant degradation in the coil's critical current. In this study, the stresses and strains, and delamination in a REBCO conductor are analyzed via a mixed-dimensional finite element method (FEM) based on the cohesive zone model (CZM). The mixed-dimensional method models any number of laminated high-aspect-ratio thin layers in a composite as stacked two-dimensional (2D) surfaces, thus, resolving the thickness-dependent meshing and computational problems in modeling such composites with full three-dimensional (3D) FEM approaches. In the studied coated conductor, the major thin constituent layers, namely, the silver, REBCO and buffer layers, are modeled as 2D surfaces while the relatively thick stabilizer and substrate are in 3D layers. All the adjacent layers are coupled via spring equations under the CZM framework. The mixed-dimensional delamination model is validated by a full-3D FEM counterpart model. Simulation results show that the mixed-dimensional model performs simulations with much higher computational efficiency than the full-3D counterpart while maintaining sufficient accuracy. Effects of the anvil size and initial crack size on delamination behavior are discussed and compared to experimental phenomena. Furthermore, the stress distributions of the constituent layers of the conductor under different delamination initiation sites are predicted.
Bibliography:SUST-102721.R1
ISSN:0953-2048
1361-6668
DOI:10.1088/1361-6668/aac55c