Nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53

The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis,...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biochemistry & cell biology Vol. 187; p. 106841
Main Authors Cheng, Lin, Wu, Ge, Yao, Wei, Deng, Kangrong, Zhang, Chunsun, Chen, Tongsheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.
AbstractList The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1 ) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.
The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.
The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.
ArticleNumber 106841
Author Wu, Ge
Yao, Wei
Chen, Tongsheng
Cheng, Lin
Zhang, Chunsun
Deng, Kangrong
Author_xml – sequence: 1
  givenname: Lin
  surname: Cheng
  fullname: Cheng, Lin
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
– sequence: 2
  givenname: Ge
  surname: Wu
  fullname: Wu, Ge
  email: gewu1215@163.com
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
– sequence: 3
  givenname: Wei
  surname: Yao
  fullname: Yao, Wei
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
– sequence: 4
  givenname: Kangrong
  surname: Deng
  fullname: Deng, Kangrong
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
– sequence: 5
  givenname: Chunsun
  surname: Zhang
  fullname: Zhang, Chunsun
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
– sequence: 6
  givenname: Tongsheng
  surname: Chen
  fullname: Chen, Tongsheng
  email: chentsh@scnu.edu.cn
  organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40752826$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1LwzAUhoNM3If-A5FeetOZpM1Hb0QZfsFQ0Hkd0uRUM7qmNu1g_no7Or306hwOz3vgfaZoVPkKEDoneE4w4Vfree68gXJOMWX9icuUHKEJkULGTAo26veEiZgKysZoGsIaY0wYTU7QOMWCUUn5BN08d6YE3cSlN7p032Cjt6fXFYlc9ely14ZI175ufXAh2jodWdAG2l2pW1d9RDVLTtFxocsAZ4c5Q-_3d6vFY7x8eXha3C5jQ6lsY854LogQwkhCiYVUckayIqOEEcBC4sJSmxMmiwLTNC8kwYziTBue25wXIpmhy-Fv3fivDkKrNi709Utdge-CSmjCMp5InPXoxQHt8g1YVTduo5ud-m3dA-kAmMaH0EDxhxCs9nLVWg1y1V6uGuT2seshBn3PrYNGBeOgMmBdA6ZV1rv_H_wAHQCBXw
Cites_doi 10.1038/nrc2962
10.1002/cyto.a.24351
10.1016/S0092-8674(01)00527-X
10.1007/s11010-019-03559-y
10.1007/s00018-019-03286-z
10.1002/jcp.21091
10.1073/pnas.0800612105
10.1038/ncb1468
10.1038/sj.emboj.7600244
10.1097/PAS.0b013e31816b6478
10.1016/j.bbapap.2010.05.002
10.1158/0008-5472.CAN-07-0085
10.1016/j.molcel.2007.08.030
10.1146/annurev.pathol.4.110807.092250
10.3390/antiox14010070
10.1038/nature06515
10.1155/2012/908183
10.1016/S0092-8674(04)00126-6
10.1016/j.ccr.2008.09.001
10.1080/1061186X.2019.1605519
10.3390/ijms26010183
10.1038/s41388-022-02447-y
10.1074/jbc.M609554200
10.1038/s41418-021-00821-z
10.1126/science.1099196
10.3390/cancers17061009
10.1038/362847a0
10.1038/nature06500
10.1016/j.freeradbiomed.2022.01.013
10.1016/j.devcel.2019.03.011
10.1126/science.1094637
10.1074/jbc.M008690200
10.1016/S0092-8674(01)00524-4
10.1245/s10434-011-2159-4
10.1016/j.celrep.2014.07.049
10.1038/s41556-020-00579-5
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biocel.2025.106841
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1878-5875
ExternalDocumentID 40752826
10_1016_j_biocel_2025_106841
S1357272525001098
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29J
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
WH7
ZU3
~G-
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AGRNS
BNPGV
ID FETCH-LOGICAL-c228t-656b71777c8121de486519f92151e0780fd2db158ff024bf8105209ac6bdb6f73
IEDL.DBID .~1
ISSN 1357-2725
1878-5875
IngestDate Sun Aug 03 23:52:57 EDT 2025
Thu Aug 28 04:48:43 EDT 2025
Wed Aug 20 23:59:49 EDT 2025
Sat Aug 30 17:13:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Rr
ShRNAs
Eto
TSA
NSCLC
IP
apoptosis
PARP
nuclear-localized SIRT1
DOX
SIRT1
p53
NAD
RC
STS
NLS
cytoplasm-localized SIRT1
FRET
WT
ED
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-656b71777c8121de486519f92151e0780fd2db158ff024bf8105209ac6bdb6f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40752826
PQID 3235963809
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3235963809
pubmed_primary_40752826
crossref_primary_10_1016_j_biocel_2025_106841
elsevier_sciencedirect_doi_10_1016_j_biocel_2025_106841
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The international journal of biochemistry & cell biology
PublicationTitleAlternate Int J Biochem Cell Biol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vaziri, Dessain, Eaton (bib27) 2001; 107
Latifkar, Ling, Hingorani (bib17) 2019; 49
Wang, Chen, Hou (bib28) 2006; 8
Maloney, Antecka, Odashiro (bib21) 2012
Tanno, Sakamoto, Miura (bib26) 2007; 282
Jang, Hwang, Kwon (bib12) 2008; 32
Tang, Chen, Mai (bib25) 2022; 180
Kim, Chen, Lou (bib16) 2008; 451
Chouhan, Muhammad, Usmani (bib4) 2024; 26
Zhao, Li, Zhou (bib37) 2019; 27
Atkins, Thomas, Barroso (bib1) 2014; 8
Luo, Nikolaev, Imai (bib20) 2001; 107
Kim, Kho, Kang (bib15) 2007; 28
Jin, Yan, Ge (bib14) 2007; 213
Huffman, Grizzle, Bamman (bib11) 2007; 67
Yi, Luo (bib35) 2010; 1804
Herranz, Serrano (bib9) 2010; 10
Yang, Zhou, Yu (bib33) 2019; 459
Brunet, Sweeney, Sturgill (bib2) 2004; 303
Haigis, Sinclair (bib8) 2010; 5
Wu, Tu, Yang (bib30) 2021; 99
Guan, Chen, Dong (bib6) 2025; 14
Zhao, Kruse, Tang (bib38) 2008; 451
Guerardel, Deltour, Pinte (bib7) 2001; 276
Lowe, Schmitt, Smith (bib19) 1993; 362
Yeung, Hoberg, Ramsey (bib34) 2004; 23
Leng, Huang, Chen (bib18) 2021; 28
Cohen, Miller, Bitterman (bib5) 2004; 305
Motta, Divecha, Lemieux (bib22) 2004; 116
Strzałka, Krawiec, Wiśnik (bib24) 2025; 17
Wang, Sengupta, Li (bib29) 2008; 14
Hisahara, Chiba, Matsumoto (bib10) 2008; 105
Jia, Liu, Ren (bib13) 2022; 41
Yang, Qu, Du (bib32) 2020; 77
Sharma, Panchaksaram, Muniyan (bib23) 2025; 232116743
Chen, Jeng, Yuan (bib3) 2012; 19
Xu, Wang, Fozouni (bib31) 2020; 22
Zhan, Wu, Fan (bib36) 2024; 170106559
Kim (10.1016/j.biocel.2025.106841_bib16) 2008; 451
Zhao (10.1016/j.biocel.2025.106841_bib38) 2008; 451
Tang (10.1016/j.biocel.2025.106841_bib25) 2022; 180
Chouhan (10.1016/j.biocel.2025.106841_bib4) 2024; 26
Maloney (10.1016/j.biocel.2025.106841_bib21) 2012
Wang (10.1016/j.biocel.2025.106841_bib29) 2008; 14
Wu (10.1016/j.biocel.2025.106841_bib30) 2021; 99
Sharma (10.1016/j.biocel.2025.106841_bib23) 2025; 232116743
Tanno (10.1016/j.biocel.2025.106841_bib26) 2007; 282
Wang (10.1016/j.biocel.2025.106841_bib28) 2006; 8
Atkins (10.1016/j.biocel.2025.106841_bib1) 2014; 8
Yang (10.1016/j.biocel.2025.106841_bib32) 2020; 77
Zhao (10.1016/j.biocel.2025.106841_bib37) 2019; 27
Yi (10.1016/j.biocel.2025.106841_bib35) 2010; 1804
Jang (10.1016/j.biocel.2025.106841_bib12) 2008; 32
Herranz (10.1016/j.biocel.2025.106841_bib9) 2010; 10
Hisahara (10.1016/j.biocel.2025.106841_bib10) 2008; 105
Guerardel (10.1016/j.biocel.2025.106841_bib7) 2001; 276
Leng (10.1016/j.biocel.2025.106841_bib18) 2021; 28
Jin (10.1016/j.biocel.2025.106841_bib14) 2007; 213
Haigis (10.1016/j.biocel.2025.106841_bib8) 2010; 5
Yeung (10.1016/j.biocel.2025.106841_bib34) 2004; 23
Xu (10.1016/j.biocel.2025.106841_bib31) 2020; 22
Luo (10.1016/j.biocel.2025.106841_bib20) 2001; 107
Zhan (10.1016/j.biocel.2025.106841_bib36) 2024; 170106559
Lowe (10.1016/j.biocel.2025.106841_bib19) 1993; 362
Latifkar (10.1016/j.biocel.2025.106841_bib17) 2019; 49
Brunet (10.1016/j.biocel.2025.106841_bib2) 2004; 303
Guan (10.1016/j.biocel.2025.106841_bib6) 2025; 14
Kim (10.1016/j.biocel.2025.106841_bib15) 2007; 28
Chen (10.1016/j.biocel.2025.106841_bib3) 2012; 19
Yang (10.1016/j.biocel.2025.106841_bib33) 2019; 459
Motta (10.1016/j.biocel.2025.106841_bib22) 2004; 116
Vaziri (10.1016/j.biocel.2025.106841_bib27) 2001; 107
Jia (10.1016/j.biocel.2025.106841_bib13) 2022; 41
Strzałka (10.1016/j.biocel.2025.106841_bib24) 2025; 17
Huffman (10.1016/j.biocel.2025.106841_bib11) 2007; 67
Cohen (10.1016/j.biocel.2025.106841_bib5) 2004; 305
References_xml – volume: 276
  start-page: 3078
  year: 2001
  end-page: 3089
  ident: bib7
  article-title: Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: 2011
  year: 2012
  end-page: 2019
  ident: bib3
  article-title: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis
  publication-title: Ann. Surg. Oncol.
– volume: 213
  start-page: 88
  year: 2007
  end-page: 97
  ident: bib14
  article-title: Cytoplasm-localized SIRT1 enhances apoptosis
  publication-title: J. Cell Physiol.
– volume: 180
  start-page: 198
  year: 2022
  end-page: 209
  ident: bib25
  article-title: Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis
  publication-title: Free Radic. Biol. Med.
– volume: 107
  start-page: 137
  year: 2001
  end-page: 148
  ident: bib20
  article-title: Negative control of p53 by Sir2α promotes cell survival under stress
  publication-title: Cell
– volume: 22
  start-page: 1170
  year: 2020
  end-page: 1179
  ident: bib31
  article-title: SIRT1 is downregulated by autophagy in senescence and ageing
  publication-title: Nat. Cell Biol.
– volume: 459
  start-page: 157
  year: 2019
  end-page: 169
  ident: bib33
  article-title: Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial–mesenchymal transition in ovarian carcinoma
  publication-title: Mol. Cell Biochem
– volume: 1804
  start-page: 1684
  year: 2010
  end-page: 1689
  ident: bib35
  article-title: SIRT1 and p53, effect on cancer, senescence and beyond
  publication-title: B. B. A. Proteins Proteom.
– volume: 28
  start-page: 277
  year: 2007
  end-page: 290
  ident: bib15
  article-title: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
  publication-title: Mol. Cell
– volume: 8
  start-page: 1545
  year: 2014
  end-page: 1557
  ident: bib1
  article-title: The multifunctional sorting protein PACS-2 regulates SIRT1-Mediated deacetylation of p53 to modulate p21-Dependent Cell-Cycle arrest
  publication-title: Cell Rep.
– volume: 5
  start-page: 253
  year: 2010
  end-page: 295
  ident: bib8
  article-title: Mammalian sirtuins: biological insights and disease relevance
  publication-title: Ann. Rev. Pathol. Mech.
– volume: 303
  start-page: 2011
  year: 2004
  end-page: 2015
  ident: bib2
  article-title: Stress-Dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
– volume: 105
  start-page: 15599
  year: 2008
  end-page: 15604
  ident: bib10
  article-title: Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 819
  year: 2010
  end-page: 823
  ident: bib9
  article-title: SIRT1: recent lessons from mouse models
  publication-title: Nat. Rev. Cancer
– volume: 77
  start-page: 2387
  year: 2020
  end-page: 2406
  ident: bib32
  article-title: Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay
  publication-title: Cell Mol. Life Sci.
– volume: 170106559
  year: 2024
  ident: bib36
  article-title: YAP upregulates AMPKα1 to induce cancer cell senescence
  publication-title: Int. J. Biochem. Cell Bio.
– volume: 362
  start-page: 847
  year: 1993
  end-page: 849
  ident: bib19
  article-title: p53 is required for radiation-induced apoptosis in mouse thymocytes
  publication-title: Nature
– volume: 232116743
  year: 2025
  ident: bib23
  article-title: Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management
  publication-title: Biochem. Pharm.
– volume: 23
  start-page: 2369
  year: 2004
  end-page: 2380
  ident: bib34
  article-title: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase
  publication-title: EMBO J.
– volume: 305
  start-page: 390
  year: 2004
  end-page: 392
  ident: bib5
  article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
  publication-title: Science
– volume: 49
  start-page: 393
  year: 2019
  end-page: 408
  ident: bib17
  article-title: Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity
  publication-title: Dev. Cell
– year: 2012
  ident: bib21
  article-title: Expression of SIRT1 and DBC1 in developing and adult retinas
  publication-title: Stem Cells Int
– volume: 27
  start-page: 1046
  year: 2019
  end-page: 1052
  ident: bib37
  article-title: SIRT1: a potential tumour biomarker and therapeutic target
  publication-title: J. Drug Target.
– volume: 32
  start-page: 1523
  year: 2008
  end-page: 1531
  ident: bib12
  article-title: SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma
  publication-title: Am. J. Surg. Pathol.
– volume: 8
  start-page: 1025
  year: 2006
  end-page: 1031
  ident: bib28
  article-title: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
  publication-title: Nat. Cell Biol.
– volume: 41
  start-page: 4474
  year: 2022
  end-page: 4484
  ident: bib13
  article-title: Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation
  publication-title: Oncogene
– volume: 282
  start-page: 6823
  year: 2007
  end-page: 6832
  ident: bib26
  article-title: Nucleocytoplasmic shuttling of the NAD
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 14010070
  year: 2025
  ident: bib6
  article-title: Unraveling the AMPK-SIRT1-FOXO pathway: the In-Depth analysis and breakthrough prospects of oxidative Stress-Induced diseases
  publication-title: Antioxidants
– volume: 107
  start-page: 149
  year: 2001
  end-page: 159
  ident: bib27
  article-title: Weinberg, hSIR2
  publication-title: Cell
– volume: 116
  start-page: 551
  year: 2004
  end-page: 563
  ident: bib22
  article-title: Mammalian SIRT1 represses forkhead transcription factors
  publication-title: Cell
– volume: 99
  start-page: 1091
  year: 2021
  end-page: 1101
  ident: bib30
  article-title: Evaluating the inhibitory priority of
  publication-title: Cytom. Part A
– volume: 451
  start-page: 587
  year: 2008
  end-page: 590
  ident: bib38
  article-title: Negative regulation of the deacetylase SIRT1 by DBC1
  publication-title: Nature
– volume: 451
  start-page: 583
  year: 2008
  end-page: 586
  ident: bib16
  article-title: DBC1 is a negative regulator of SIRT1
  publication-title: Nature
– volume: 26
  start-page: 183
  year: 2024
  ident: bib4
  article-title: Molecular sentinels: unveiling the role of sirtuins in prostate cancer progression
  publication-title: Int. J. Mol. Sci.
– volume: 67
  start-page: 6612
  year: 2007
  end-page: 6618
  ident: bib11
  article-title: SIRT1 is significantly elevated in mouse and human prostate cancer
  publication-title: Cancer Res
– volume: 28
  start-page: 3329
  year: 2021
  end-page: 3343
  ident: bib18
  article-title: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis
  publication-title: Cell Death Differ.
– volume: 17
  start-page: 1009
  year: 2025
  ident: bib24
  article-title: The role of the sirtuin family histone deacetylases in acute myeloid Leukemia—A promising road ahead
  publication-title: Cancers
– volume: 14
  start-page: 312
  year: 2008
  end-page: 323
  ident: bib29
  article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
  publication-title: Cancer Cell
– volume: 10
  start-page: 819
  issue: 12
  year: 2010
  ident: 10.1016/j.biocel.2025.106841_bib9
  article-title: SIRT1: recent lessons from mouse models
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2962
– volume: 99
  start-page: 1091
  issue: 11
  year: 2021
  ident: 10.1016/j.biocel.2025.106841_bib30
  article-title: Evaluating the inhibitory priority of Bcl-xL to bad, tBid and bax by using live-cell imaging assay
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.24351
– volume: 107
  start-page: 149
  issue: 2
  year: 2001
  ident: 10.1016/j.biocel.2025.106841_bib27
  article-title: Weinberg, hSIR2SIRT1 functions as an NAD-Dependent p53 deacetylase
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00527-X
– volume: 459
  start-page: 157
  issue: 1
  year: 2019
  ident: 10.1016/j.biocel.2025.106841_bib33
  article-title: Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial–mesenchymal transition in ovarian carcinoma
  publication-title: Mol. Cell Biochem
  doi: 10.1007/s11010-019-03559-y
– volume: 77
  start-page: 2387
  issue: 12
  year: 2020
  ident: 10.1016/j.biocel.2025.106841_bib32
  article-title: Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-019-03286-z
– volume: 213
  start-page: 88
  issue: 1
  year: 2007
  ident: 10.1016/j.biocel.2025.106841_bib14
  article-title: Cytoplasm-localized SIRT1 enhances apoptosis
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.21091
– volume: 105
  start-page: 15599
  issue: 40
  year: 2008
  ident: 10.1016/j.biocel.2025.106841_bib10
  article-title: Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0800612105
– volume: 232116743
  year: 2025
  ident: 10.1016/j.biocel.2025.106841_bib23
  article-title: Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management
  publication-title: Biochem. Pharm.
– volume: 8
  start-page: 1025
  issue: 9
  year: 2006
  ident: 10.1016/j.biocel.2025.106841_bib28
  article-title: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1468
– volume: 23
  start-page: 2369
  issue: 12
  year: 2004
  ident: 10.1016/j.biocel.2025.106841_bib34
  article-title: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600244
– volume: 32
  start-page: 1523
  issue: 10
  year: 2008
  ident: 10.1016/j.biocel.2025.106841_bib12
  article-title: SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0b013e31816b6478
– volume: 1804
  start-page: 1684
  issue: 8
  year: 2010
  ident: 10.1016/j.biocel.2025.106841_bib35
  article-title: SIRT1 and p53, effect on cancer, senescence and beyond
  publication-title: B. B. A. Proteins Proteom.
  doi: 10.1016/j.bbapap.2010.05.002
– volume: 67
  start-page: 6612
  issue: 14
  year: 2007
  ident: 10.1016/j.biocel.2025.106841_bib11
  article-title: SIRT1 is significantly elevated in mouse and human prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0085
– volume: 28
  start-page: 277
  issue: 2
  year: 2007
  ident: 10.1016/j.biocel.2025.106841_bib15
  article-title: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.08.030
– volume: 5
  start-page: 253
  issue: 1
  year: 2010
  ident: 10.1016/j.biocel.2025.106841_bib8
  article-title: Mammalian sirtuins: biological insights and disease relevance
  publication-title: Ann. Rev. Pathol. Mech.
  doi: 10.1146/annurev.pathol.4.110807.092250
– volume: 14
  start-page: 14010070
  issue: 1
  year: 2025
  ident: 10.1016/j.biocel.2025.106841_bib6
  article-title: Unraveling the AMPK-SIRT1-FOXO pathway: the In-Depth analysis and breakthrough prospects of oxidative Stress-Induced diseases
  publication-title: Antioxidants
  doi: 10.3390/antiox14010070
– volume: 451
  start-page: 587
  issue: 7178
  year: 2008
  ident: 10.1016/j.biocel.2025.106841_bib38
  article-title: Negative regulation of the deacetylase SIRT1 by DBC1
  publication-title: Nature
  doi: 10.1038/nature06515
– year: 2012
  ident: 10.1016/j.biocel.2025.106841_bib21
  article-title: Expression of SIRT1 and DBC1 in developing and adult retinas
  publication-title: Stem Cells Int
  doi: 10.1155/2012/908183
– volume: 116
  start-page: 551
  issue: 4
  year: 2004
  ident: 10.1016/j.biocel.2025.106841_bib22
  article-title: Mammalian SIRT1 represses forkhead transcription factors
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00126-6
– volume: 14
  start-page: 312
  issue: 4
  year: 2008
  ident: 10.1016/j.biocel.2025.106841_bib29
  article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.09.001
– volume: 27
  start-page: 1046
  issue: 10
  year: 2019
  ident: 10.1016/j.biocel.2025.106841_bib37
  article-title: SIRT1: a potential tumour biomarker and therapeutic target
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2019.1605519
– volume: 26
  start-page: 183
  issue: 1
  year: 2024
  ident: 10.1016/j.biocel.2025.106841_bib4
  article-title: Molecular sentinels: unveiling the role of sirtuins in prostate cancer progression
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms26010183
– volume: 41
  start-page: 4474
  issue: 39
  year: 2022
  ident: 10.1016/j.biocel.2025.106841_bib13
  article-title: Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation
  publication-title: Oncogene
  doi: 10.1038/s41388-022-02447-y
– volume: 282
  start-page: 6823
  issue: 9
  year: 2007
  ident: 10.1016/j.biocel.2025.106841_bib26
  article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609554200
– volume: 28
  start-page: 3329
  issue: 12
  year: 2021
  ident: 10.1016/j.biocel.2025.106841_bib18
  article-title: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-021-00821-z
– volume: 170106559
  year: 2024
  ident: 10.1016/j.biocel.2025.106841_bib36
  article-title: YAP upregulates AMPKα1 to induce cancer cell senescence
  publication-title: Int. J. Biochem. Cell Bio.
– volume: 305
  start-page: 390
  issue: 5682
  year: 2004
  ident: 10.1016/j.biocel.2025.106841_bib5
  article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1099196
– volume: 17
  start-page: 1009
  issue: 6
  year: 2025
  ident: 10.1016/j.biocel.2025.106841_bib24
  article-title: The role of the sirtuin family histone deacetylases in acute myeloid Leukemia—A promising road ahead
  publication-title: Cancers
  doi: 10.3390/cancers17061009
– volume: 362
  start-page: 847
  issue: 6423
  year: 1993
  ident: 10.1016/j.biocel.2025.106841_bib19
  article-title: p53 is required for radiation-induced apoptosis in mouse thymocytes
  publication-title: Nature
  doi: 10.1038/362847a0
– volume: 451
  start-page: 583
  issue: 7178
  year: 2008
  ident: 10.1016/j.biocel.2025.106841_bib16
  article-title: DBC1 is a negative regulator of SIRT1
  publication-title: Nature
  doi: 10.1038/nature06500
– volume: 180
  start-page: 198
  year: 2022
  ident: 10.1016/j.biocel.2025.106841_bib25
  article-title: Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2022.01.013
– volume: 49
  start-page: 393
  issue: 3
  year: 2019
  ident: 10.1016/j.biocel.2025.106841_bib17
  article-title: Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.03.011
– volume: 303
  start-page: 2011
  issue: 5666
  year: 2004
  ident: 10.1016/j.biocel.2025.106841_bib2
  article-title: Stress-Dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1094637
– volume: 276
  start-page: 3078
  issue: 5
  year: 2001
  ident: 10.1016/j.biocel.2025.106841_bib7
  article-title: Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M008690200
– volume: 107
  start-page: 137
  issue: 2
  year: 2001
  ident: 10.1016/j.biocel.2025.106841_bib20
  article-title: Negative control of p53 by Sir2α promotes cell survival under stress
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00524-4
– volume: 19
  start-page: 2011
  issue: 6
  year: 2012
  ident: 10.1016/j.biocel.2025.106841_bib3
  article-title: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-011-2159-4
– volume: 8
  start-page: 1545
  issue: 5
  year: 2014
  ident: 10.1016/j.biocel.2025.106841_bib1
  article-title: The multifunctional sorting protein PACS-2 regulates SIRT1-Mediated deacetylation of p53 to modulate p21-Dependent Cell-Cycle arrest
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.07.049
– volume: 22
  start-page: 1170
  issue: 10
  year: 2020
  ident: 10.1016/j.biocel.2025.106841_bib31
  article-title: SIRT1 is downregulated by autophagy in senescence and ageing
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00579-5
SSID ssj0001523
Score 2.478527
Snippet The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106841
SubjectTerms Acetylation - drug effects
apoptosis
Apoptosis - drug effects
Cell Line, Tumor
Cell Nucleus - metabolism
cytoplasm-localized SIRT1
Humans
nuclear-localized SIRT1
p53
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title Nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53
URI https://dx.doi.org/10.1016/j.biocel.2025.106841
https://www.ncbi.nlm.nih.gov/pubmed/40752826
https://www.proquest.com/docview/3235963809
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRQguFbR8bIHKSIib2U38keyNZUW1BbEH2kq9WXbsFCORjbopUjnw25lxEhCHColbYtmKNWPNe868sQFeCe0qK3zBXU1XmHnleakLyR3S-0J5V5fpyPxPa706lx8u1MUOLMdaGJJVDrG_j-kpWg8t08Ga0zbG6WkmFGURKS9H-R0q-JWyoFX-5ucfmQfiUxLZY2dOvcfyuaTxchFBghIQucImXcrsNni6jX4mGDp-AHsDf2SLfooPYSc0-3CwaHDv_O2GvWZJ0Zl-le_D3Xfj073leK_bAbxd0xHG9oonGIs_gmenJ5_PMhabL9HFbstsu2m7zTZu2fdomcegGbob0sw1l6xV4hGcH78_W674cI8Cr_K87DhSNoe7tqKoEM0zH2SpkbfVc0L7gBRhVvvcu0yVdY2Ije7JkjjGVtpRkV4hHsNus2nCU2AzF8py7oN2WSXlXNrcWx0EusB6gVRhAnw0n2n74zLMqCP7anpzGzK36c09gWK0sfnL7QYj-j9GvhxdYtCAlOawTdhcb43IhaKwMptP4Envq99zwe2rwlWoD__7u8_gPr31er7nsNtdXYcXyEs6d5QW3hHcWZx8XK1_ARcl3qk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH50KaO7lK7dunS_NBi7icSWJSu3ZWElWdsc1hR6E5IlbyrMMY07aP_6Psl2oYcy2M3IEhbvifd98vv0BPCZCVNoZnNqynCFmeWWSpFn1CC9z7k1pYwl88-WYn6R_bjkl1sw68_CBFllF_vbmB6jddcy6qw5qr0fnSeMhyxiyMuF_I58BtuhOhUfwPZ0cTJfPgRkhKios8f-NAzoT9BFmZfxiBMhB5FybBIyS55CqKcYaESi4z3Y7SgkmbazfAlbrtqHg2mF2-c_t-QLiaLO-Ld8H55_6592Zv3VbgfwdRmqGOtrGpHM3zlLzhc_Vwnx1W9vfLMhul7XzXrjN-Sv18Ri3HTNbZDNVb9IzdkruDj-vprNaXeVAi3SVDYUWZvBjVueFwjoiXWZFEjdykkAfIcsYVza1JqEy7JE0EYPJVEfowthwjm9nL2GQbWu3BsgY-OknFgnTFJk2STTqdXCMfSCtgzZwhBobz5VtxUzVC8lu1KtuVUwt2rNPYS8t7F65HmFQf0fIz_1LlFowJDp0JVb32wUSxkPkWU8GcJh66uHueAOluNCFEf__d2PsDNfnZ2q08Xy5C28CG9aed87GDTXN-490pTGfOiW4T3LDuFa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear-localized+SIRT1+inhibits+apoptosis+via+deacetylating+p53&rft.jtitle=The+international+journal+of+biochemistry+%26+cell+biology&rft.au=Cheng%2C+Lin&rft.au=Wu%2C+Ge&rft.au=Yao%2C+Wei&rft.au=Deng%2C+Kangrong&rft.date=2025-10-01&rft.issn=1878-5875&rft.eissn=1878-5875&rft.spage=106841&rft_id=info:doi/10.1016%2Fj.biocel.2025.106841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1357-2725&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1357-2725&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1357-2725&client=summon