Nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53
The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis,...
Saved in:
Published in | The international journal of biochemistry & cell biology Vol. 187; p. 106841 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53. |
---|---|
AbstractList | The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1
) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53. The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53. The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53. |
ArticleNumber | 106841 |
Author | Wu, Ge Yao, Wei Chen, Tongsheng Cheng, Lin Zhang, Chunsun Deng, Kangrong |
Author_xml | – sequence: 1 givenname: Lin surname: Cheng fullname: Cheng, Lin organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China – sequence: 2 givenname: Ge surname: Wu fullname: Wu, Ge email: gewu1215@163.com organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China – sequence: 3 givenname: Wei surname: Yao fullname: Yao, Wei organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China – sequence: 4 givenname: Kangrong surname: Deng fullname: Deng, Kangrong organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China – sequence: 5 givenname: Chunsun surname: Zhang fullname: Zhang, Chunsun organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China – sequence: 6 givenname: Tongsheng surname: Chen fullname: Chen, Tongsheng email: chentsh@scnu.edu.cn organization: MOE Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510631, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40752826$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1LwzAUhoNM3If-A5FeetOZpM1Hb0QZfsFQ0Hkd0uRUM7qmNu1g_no7Or306hwOz3vgfaZoVPkKEDoneE4w4Vfree68gXJOMWX9icuUHKEJkULGTAo26veEiZgKysZoGsIaY0wYTU7QOMWCUUn5BN08d6YE3cSlN7p032Cjt6fXFYlc9ely14ZI175ufXAh2jodWdAG2l2pW1d9RDVLTtFxocsAZ4c5Q-_3d6vFY7x8eXha3C5jQ6lsY854LogQwkhCiYVUckayIqOEEcBC4sJSmxMmiwLTNC8kwYziTBue25wXIpmhy-Fv3fivDkKrNi709Utdge-CSmjCMp5InPXoxQHt8g1YVTduo5ud-m3dA-kAmMaH0EDxhxCs9nLVWg1y1V6uGuT2seshBn3PrYNGBeOgMmBdA6ZV1rv_H_wAHQCBXw |
Cites_doi | 10.1038/nrc2962 10.1002/cyto.a.24351 10.1016/S0092-8674(01)00527-X 10.1007/s11010-019-03559-y 10.1007/s00018-019-03286-z 10.1002/jcp.21091 10.1073/pnas.0800612105 10.1038/ncb1468 10.1038/sj.emboj.7600244 10.1097/PAS.0b013e31816b6478 10.1016/j.bbapap.2010.05.002 10.1158/0008-5472.CAN-07-0085 10.1016/j.molcel.2007.08.030 10.1146/annurev.pathol.4.110807.092250 10.3390/antiox14010070 10.1038/nature06515 10.1155/2012/908183 10.1016/S0092-8674(04)00126-6 10.1016/j.ccr.2008.09.001 10.1080/1061186X.2019.1605519 10.3390/ijms26010183 10.1038/s41388-022-02447-y 10.1074/jbc.M609554200 10.1038/s41418-021-00821-z 10.1126/science.1099196 10.3390/cancers17061009 10.1038/362847a0 10.1038/nature06500 10.1016/j.freeradbiomed.2022.01.013 10.1016/j.devcel.2019.03.011 10.1126/science.1094637 10.1074/jbc.M008690200 10.1016/S0092-8674(01)00524-4 10.1245/s10434-011-2159-4 10.1016/j.celrep.2014.07.049 10.1038/s41556-020-00579-5 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biocel.2025.106841 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1878-5875 |
ExternalDocumentID | 40752826 10_1016_j_biocel_2025_106841 S1357272525001098 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29J 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPCBC SSU SSZ T5K WH7 ZU3 ~G- ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 AGRNS BNPGV |
ID | FETCH-LOGICAL-c228t-656b71777c8121de486519f92151e0780fd2db158ff024bf8105209ac6bdb6f73 |
IEDL.DBID | .~1 |
ISSN | 1357-2725 1878-5875 |
IngestDate | Sun Aug 03 23:52:57 EDT 2025 Thu Aug 28 04:48:43 EDT 2025 Wed Aug 20 23:59:49 EDT 2025 Sat Aug 30 17:13:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rr ShRNAs Eto TSA NSCLC IP apoptosis PARP nuclear-localized SIRT1 DOX SIRT1 p53 NAD RC STS NLS cytoplasm-localized SIRT1 FRET WT ED |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c228t-656b71777c8121de486519f92151e0780fd2db158ff024bf8105209ac6bdb6f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40752826 |
PQID | 3235963809 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3235963809 pubmed_primary_40752826 crossref_primary_10_1016_j_biocel_2025_106841 elsevier_sciencedirect_doi_10_1016_j_biocel_2025_106841 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The international journal of biochemistry & cell biology |
PublicationTitleAlternate | Int J Biochem Cell Biol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vaziri, Dessain, Eaton (bib27) 2001; 107 Latifkar, Ling, Hingorani (bib17) 2019; 49 Wang, Chen, Hou (bib28) 2006; 8 Maloney, Antecka, Odashiro (bib21) 2012 Tanno, Sakamoto, Miura (bib26) 2007; 282 Jang, Hwang, Kwon (bib12) 2008; 32 Tang, Chen, Mai (bib25) 2022; 180 Kim, Chen, Lou (bib16) 2008; 451 Chouhan, Muhammad, Usmani (bib4) 2024; 26 Zhao, Li, Zhou (bib37) 2019; 27 Atkins, Thomas, Barroso (bib1) 2014; 8 Luo, Nikolaev, Imai (bib20) 2001; 107 Kim, Kho, Kang (bib15) 2007; 28 Jin, Yan, Ge (bib14) 2007; 213 Huffman, Grizzle, Bamman (bib11) 2007; 67 Yi, Luo (bib35) 2010; 1804 Herranz, Serrano (bib9) 2010; 10 Yang, Zhou, Yu (bib33) 2019; 459 Brunet, Sweeney, Sturgill (bib2) 2004; 303 Haigis, Sinclair (bib8) 2010; 5 Wu, Tu, Yang (bib30) 2021; 99 Guan, Chen, Dong (bib6) 2025; 14 Zhao, Kruse, Tang (bib38) 2008; 451 Guerardel, Deltour, Pinte (bib7) 2001; 276 Lowe, Schmitt, Smith (bib19) 1993; 362 Yeung, Hoberg, Ramsey (bib34) 2004; 23 Leng, Huang, Chen (bib18) 2021; 28 Cohen, Miller, Bitterman (bib5) 2004; 305 Motta, Divecha, Lemieux (bib22) 2004; 116 Strzałka, Krawiec, Wiśnik (bib24) 2025; 17 Wang, Sengupta, Li (bib29) 2008; 14 Hisahara, Chiba, Matsumoto (bib10) 2008; 105 Jia, Liu, Ren (bib13) 2022; 41 Yang, Qu, Du (bib32) 2020; 77 Sharma, Panchaksaram, Muniyan (bib23) 2025; 232116743 Chen, Jeng, Yuan (bib3) 2012; 19 Xu, Wang, Fozouni (bib31) 2020; 22 Zhan, Wu, Fan (bib36) 2024; 170106559 Kim (10.1016/j.biocel.2025.106841_bib16) 2008; 451 Zhao (10.1016/j.biocel.2025.106841_bib38) 2008; 451 Tang (10.1016/j.biocel.2025.106841_bib25) 2022; 180 Chouhan (10.1016/j.biocel.2025.106841_bib4) 2024; 26 Maloney (10.1016/j.biocel.2025.106841_bib21) 2012 Wang (10.1016/j.biocel.2025.106841_bib29) 2008; 14 Wu (10.1016/j.biocel.2025.106841_bib30) 2021; 99 Sharma (10.1016/j.biocel.2025.106841_bib23) 2025; 232116743 Tanno (10.1016/j.biocel.2025.106841_bib26) 2007; 282 Wang (10.1016/j.biocel.2025.106841_bib28) 2006; 8 Atkins (10.1016/j.biocel.2025.106841_bib1) 2014; 8 Yang (10.1016/j.biocel.2025.106841_bib32) 2020; 77 Zhao (10.1016/j.biocel.2025.106841_bib37) 2019; 27 Yi (10.1016/j.biocel.2025.106841_bib35) 2010; 1804 Jang (10.1016/j.biocel.2025.106841_bib12) 2008; 32 Herranz (10.1016/j.biocel.2025.106841_bib9) 2010; 10 Hisahara (10.1016/j.biocel.2025.106841_bib10) 2008; 105 Guerardel (10.1016/j.biocel.2025.106841_bib7) 2001; 276 Leng (10.1016/j.biocel.2025.106841_bib18) 2021; 28 Jin (10.1016/j.biocel.2025.106841_bib14) 2007; 213 Haigis (10.1016/j.biocel.2025.106841_bib8) 2010; 5 Yeung (10.1016/j.biocel.2025.106841_bib34) 2004; 23 Xu (10.1016/j.biocel.2025.106841_bib31) 2020; 22 Luo (10.1016/j.biocel.2025.106841_bib20) 2001; 107 Zhan (10.1016/j.biocel.2025.106841_bib36) 2024; 170106559 Lowe (10.1016/j.biocel.2025.106841_bib19) 1993; 362 Latifkar (10.1016/j.biocel.2025.106841_bib17) 2019; 49 Brunet (10.1016/j.biocel.2025.106841_bib2) 2004; 303 Guan (10.1016/j.biocel.2025.106841_bib6) 2025; 14 Kim (10.1016/j.biocel.2025.106841_bib15) 2007; 28 Chen (10.1016/j.biocel.2025.106841_bib3) 2012; 19 Yang (10.1016/j.biocel.2025.106841_bib33) 2019; 459 Motta (10.1016/j.biocel.2025.106841_bib22) 2004; 116 Vaziri (10.1016/j.biocel.2025.106841_bib27) 2001; 107 Jia (10.1016/j.biocel.2025.106841_bib13) 2022; 41 Strzałka (10.1016/j.biocel.2025.106841_bib24) 2025; 17 Huffman (10.1016/j.biocel.2025.106841_bib11) 2007; 67 Cohen (10.1016/j.biocel.2025.106841_bib5) 2004; 305 |
References_xml | – volume: 276 start-page: 3078 year: 2001 end-page: 3089 ident: bib7 article-title: Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53 publication-title: J. Biol. Chem. – volume: 19 start-page: 2011 year: 2012 end-page: 2019 ident: bib3 article-title: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis publication-title: Ann. Surg. Oncol. – volume: 213 start-page: 88 year: 2007 end-page: 97 ident: bib14 article-title: Cytoplasm-localized SIRT1 enhances apoptosis publication-title: J. Cell Physiol. – volume: 180 start-page: 198 year: 2022 end-page: 209 ident: bib25 article-title: Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis publication-title: Free Radic. Biol. Med. – volume: 107 start-page: 137 year: 2001 end-page: 148 ident: bib20 article-title: Negative control of p53 by Sir2α promotes cell survival under stress publication-title: Cell – volume: 22 start-page: 1170 year: 2020 end-page: 1179 ident: bib31 article-title: SIRT1 is downregulated by autophagy in senescence and ageing publication-title: Nat. Cell Biol. – volume: 459 start-page: 157 year: 2019 end-page: 169 ident: bib33 article-title: Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial–mesenchymal transition in ovarian carcinoma publication-title: Mol. Cell Biochem – volume: 1804 start-page: 1684 year: 2010 end-page: 1689 ident: bib35 article-title: SIRT1 and p53, effect on cancer, senescence and beyond publication-title: B. B. A. Proteins Proteom. – volume: 28 start-page: 277 year: 2007 end-page: 290 ident: bib15 article-title: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity publication-title: Mol. Cell – volume: 8 start-page: 1545 year: 2014 end-page: 1557 ident: bib1 article-title: The multifunctional sorting protein PACS-2 regulates SIRT1-Mediated deacetylation of p53 to modulate p21-Dependent Cell-Cycle arrest publication-title: Cell Rep. – volume: 5 start-page: 253 year: 2010 end-page: 295 ident: bib8 article-title: Mammalian sirtuins: biological insights and disease relevance publication-title: Ann. Rev. Pathol. Mech. – volume: 303 start-page: 2011 year: 2004 end-page: 2015 ident: bib2 article-title: Stress-Dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science – volume: 105 start-page: 15599 year: 2008 end-page: 15604 ident: bib10 article-title: Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 819 year: 2010 end-page: 823 ident: bib9 article-title: SIRT1: recent lessons from mouse models publication-title: Nat. Rev. Cancer – volume: 77 start-page: 2387 year: 2020 end-page: 2406 ident: bib32 article-title: Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay publication-title: Cell Mol. Life Sci. – volume: 170106559 year: 2024 ident: bib36 article-title: YAP upregulates AMPKα1 to induce cancer cell senescence publication-title: Int. J. Biochem. Cell Bio. – volume: 362 start-page: 847 year: 1993 end-page: 849 ident: bib19 article-title: p53 is required for radiation-induced apoptosis in mouse thymocytes publication-title: Nature – volume: 232116743 year: 2025 ident: bib23 article-title: Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management publication-title: Biochem. Pharm. – volume: 23 start-page: 2369 year: 2004 end-page: 2380 ident: bib34 article-title: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase publication-title: EMBO J. – volume: 305 start-page: 390 year: 2004 end-page: 392 ident: bib5 article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase publication-title: Science – volume: 49 start-page: 393 year: 2019 end-page: 408 ident: bib17 article-title: Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity publication-title: Dev. Cell – year: 2012 ident: bib21 article-title: Expression of SIRT1 and DBC1 in developing and adult retinas publication-title: Stem Cells Int – volume: 27 start-page: 1046 year: 2019 end-page: 1052 ident: bib37 article-title: SIRT1: a potential tumour biomarker and therapeutic target publication-title: J. Drug Target. – volume: 32 start-page: 1523 year: 2008 end-page: 1531 ident: bib12 article-title: SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma publication-title: Am. J. Surg. Pathol. – volume: 8 start-page: 1025 year: 2006 end-page: 1031 ident: bib28 article-title: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage publication-title: Nat. Cell Biol. – volume: 41 start-page: 4474 year: 2022 end-page: 4484 ident: bib13 article-title: Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation publication-title: Oncogene – volume: 282 start-page: 6823 year: 2007 end-page: 6832 ident: bib26 article-title: Nucleocytoplasmic shuttling of the NAD publication-title: J. Biol. Chem. – volume: 14 start-page: 14010070 year: 2025 ident: bib6 article-title: Unraveling the AMPK-SIRT1-FOXO pathway: the In-Depth analysis and breakthrough prospects of oxidative Stress-Induced diseases publication-title: Antioxidants – volume: 107 start-page: 149 year: 2001 end-page: 159 ident: bib27 article-title: Weinberg, hSIR2 publication-title: Cell – volume: 116 start-page: 551 year: 2004 end-page: 563 ident: bib22 article-title: Mammalian SIRT1 represses forkhead transcription factors publication-title: Cell – volume: 99 start-page: 1091 year: 2021 end-page: 1101 ident: bib30 article-title: Evaluating the inhibitory priority of publication-title: Cytom. Part A – volume: 451 start-page: 587 year: 2008 end-page: 590 ident: bib38 article-title: Negative regulation of the deacetylase SIRT1 by DBC1 publication-title: Nature – volume: 451 start-page: 583 year: 2008 end-page: 586 ident: bib16 article-title: DBC1 is a negative regulator of SIRT1 publication-title: Nature – volume: 26 start-page: 183 year: 2024 ident: bib4 article-title: Molecular sentinels: unveiling the role of sirtuins in prostate cancer progression publication-title: Int. J. Mol. Sci. – volume: 67 start-page: 6612 year: 2007 end-page: 6618 ident: bib11 article-title: SIRT1 is significantly elevated in mouse and human prostate cancer publication-title: Cancer Res – volume: 28 start-page: 3329 year: 2021 end-page: 3343 ident: bib18 article-title: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis publication-title: Cell Death Differ. – volume: 17 start-page: 1009 year: 2025 ident: bib24 article-title: The role of the sirtuin family histone deacetylases in acute myeloid Leukemia—A promising road ahead publication-title: Cancers – volume: 14 start-page: 312 year: 2008 end-page: 323 ident: bib29 article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice publication-title: Cancer Cell – volume: 10 start-page: 819 issue: 12 year: 2010 ident: 10.1016/j.biocel.2025.106841_bib9 article-title: SIRT1: recent lessons from mouse models publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2962 – volume: 99 start-page: 1091 issue: 11 year: 2021 ident: 10.1016/j.biocel.2025.106841_bib30 article-title: Evaluating the inhibitory priority of Bcl-xL to bad, tBid and bax by using live-cell imaging assay publication-title: Cytom. Part A doi: 10.1002/cyto.a.24351 – volume: 107 start-page: 149 issue: 2 year: 2001 ident: 10.1016/j.biocel.2025.106841_bib27 article-title: Weinberg, hSIR2SIRT1 functions as an NAD-Dependent p53 deacetylase publication-title: Cell doi: 10.1016/S0092-8674(01)00527-X – volume: 459 start-page: 157 issue: 1 year: 2019 ident: 10.1016/j.biocel.2025.106841_bib33 article-title: Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial–mesenchymal transition in ovarian carcinoma publication-title: Mol. Cell Biochem doi: 10.1007/s11010-019-03559-y – volume: 77 start-page: 2387 issue: 12 year: 2020 ident: 10.1016/j.biocel.2025.106841_bib32 article-title: Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-019-03286-z – volume: 213 start-page: 88 issue: 1 year: 2007 ident: 10.1016/j.biocel.2025.106841_bib14 article-title: Cytoplasm-localized SIRT1 enhances apoptosis publication-title: J. Cell Physiol. doi: 10.1002/jcp.21091 – volume: 105 start-page: 15599 issue: 40 year: 2008 ident: 10.1016/j.biocel.2025.106841_bib10 article-title: Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0800612105 – volume: 232116743 year: 2025 ident: 10.1016/j.biocel.2025.106841_bib23 article-title: Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management publication-title: Biochem. Pharm. – volume: 8 start-page: 1025 issue: 9 year: 2006 ident: 10.1016/j.biocel.2025.106841_bib28 article-title: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage publication-title: Nat. Cell Biol. doi: 10.1038/ncb1468 – volume: 23 start-page: 2369 issue: 12 year: 2004 ident: 10.1016/j.biocel.2025.106841_bib34 article-title: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase publication-title: EMBO J. doi: 10.1038/sj.emboj.7600244 – volume: 32 start-page: 1523 issue: 10 year: 2008 ident: 10.1016/j.biocel.2025.106841_bib12 article-title: SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma publication-title: Am. J. Surg. Pathol. doi: 10.1097/PAS.0b013e31816b6478 – volume: 1804 start-page: 1684 issue: 8 year: 2010 ident: 10.1016/j.biocel.2025.106841_bib35 article-title: SIRT1 and p53, effect on cancer, senescence and beyond publication-title: B. B. A. Proteins Proteom. doi: 10.1016/j.bbapap.2010.05.002 – volume: 67 start-page: 6612 issue: 14 year: 2007 ident: 10.1016/j.biocel.2025.106841_bib11 article-title: SIRT1 is significantly elevated in mouse and human prostate cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0085 – volume: 28 start-page: 277 issue: 2 year: 2007 ident: 10.1016/j.biocel.2025.106841_bib15 article-title: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.08.030 – volume: 5 start-page: 253 issue: 1 year: 2010 ident: 10.1016/j.biocel.2025.106841_bib8 article-title: Mammalian sirtuins: biological insights and disease relevance publication-title: Ann. Rev. Pathol. Mech. doi: 10.1146/annurev.pathol.4.110807.092250 – volume: 14 start-page: 14010070 issue: 1 year: 2025 ident: 10.1016/j.biocel.2025.106841_bib6 article-title: Unraveling the AMPK-SIRT1-FOXO pathway: the In-Depth analysis and breakthrough prospects of oxidative Stress-Induced diseases publication-title: Antioxidants doi: 10.3390/antiox14010070 – volume: 451 start-page: 587 issue: 7178 year: 2008 ident: 10.1016/j.biocel.2025.106841_bib38 article-title: Negative regulation of the deacetylase SIRT1 by DBC1 publication-title: Nature doi: 10.1038/nature06515 – year: 2012 ident: 10.1016/j.biocel.2025.106841_bib21 article-title: Expression of SIRT1 and DBC1 in developing and adult retinas publication-title: Stem Cells Int doi: 10.1155/2012/908183 – volume: 116 start-page: 551 issue: 4 year: 2004 ident: 10.1016/j.biocel.2025.106841_bib22 article-title: Mammalian SIRT1 represses forkhead transcription factors publication-title: Cell doi: 10.1016/S0092-8674(04)00126-6 – volume: 14 start-page: 312 issue: 4 year: 2008 ident: 10.1016/j.biocel.2025.106841_bib29 article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.09.001 – volume: 27 start-page: 1046 issue: 10 year: 2019 ident: 10.1016/j.biocel.2025.106841_bib37 article-title: SIRT1: a potential tumour biomarker and therapeutic target publication-title: J. Drug Target. doi: 10.1080/1061186X.2019.1605519 – volume: 26 start-page: 183 issue: 1 year: 2024 ident: 10.1016/j.biocel.2025.106841_bib4 article-title: Molecular sentinels: unveiling the role of sirtuins in prostate cancer progression publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms26010183 – volume: 41 start-page: 4474 issue: 39 year: 2022 ident: 10.1016/j.biocel.2025.106841_bib13 article-title: Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation publication-title: Oncogene doi: 10.1038/s41388-022-02447-y – volume: 282 start-page: 6823 issue: 9 year: 2007 ident: 10.1016/j.biocel.2025.106841_bib26 article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609554200 – volume: 28 start-page: 3329 issue: 12 year: 2021 ident: 10.1016/j.biocel.2025.106841_bib18 article-title: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis publication-title: Cell Death Differ. doi: 10.1038/s41418-021-00821-z – volume: 170106559 year: 2024 ident: 10.1016/j.biocel.2025.106841_bib36 article-title: YAP upregulates AMPKα1 to induce cancer cell senescence publication-title: Int. J. Biochem. Cell Bio. – volume: 305 start-page: 390 issue: 5682 year: 2004 ident: 10.1016/j.biocel.2025.106841_bib5 article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase publication-title: Science doi: 10.1126/science.1099196 – volume: 17 start-page: 1009 issue: 6 year: 2025 ident: 10.1016/j.biocel.2025.106841_bib24 article-title: The role of the sirtuin family histone deacetylases in acute myeloid Leukemia—A promising road ahead publication-title: Cancers doi: 10.3390/cancers17061009 – volume: 362 start-page: 847 issue: 6423 year: 1993 ident: 10.1016/j.biocel.2025.106841_bib19 article-title: p53 is required for radiation-induced apoptosis in mouse thymocytes publication-title: Nature doi: 10.1038/362847a0 – volume: 451 start-page: 583 issue: 7178 year: 2008 ident: 10.1016/j.biocel.2025.106841_bib16 article-title: DBC1 is a negative regulator of SIRT1 publication-title: Nature doi: 10.1038/nature06500 – volume: 180 start-page: 198 year: 2022 ident: 10.1016/j.biocel.2025.106841_bib25 article-title: Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2022.01.013 – volume: 49 start-page: 393 issue: 3 year: 2019 ident: 10.1016/j.biocel.2025.106841_bib17 article-title: Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.03.011 – volume: 303 start-page: 2011 issue: 5666 year: 2004 ident: 10.1016/j.biocel.2025.106841_bib2 article-title: Stress-Dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science doi: 10.1126/science.1094637 – volume: 276 start-page: 3078 issue: 5 year: 2001 ident: 10.1016/j.biocel.2025.106841_bib7 article-title: Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M008690200 – volume: 107 start-page: 137 issue: 2 year: 2001 ident: 10.1016/j.biocel.2025.106841_bib20 article-title: Negative control of p53 by Sir2α promotes cell survival under stress publication-title: Cell doi: 10.1016/S0092-8674(01)00524-4 – volume: 19 start-page: 2011 issue: 6 year: 2012 ident: 10.1016/j.biocel.2025.106841_bib3 article-title: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-011-2159-4 – volume: 8 start-page: 1545 issue: 5 year: 2014 ident: 10.1016/j.biocel.2025.106841_bib1 article-title: The multifunctional sorting protein PACS-2 regulates SIRT1-Mediated deacetylation of p53 to modulate p21-Dependent Cell-Cycle arrest publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.049 – volume: 22 start-page: 1170 issue: 10 year: 2020 ident: 10.1016/j.biocel.2025.106841_bib31 article-title: SIRT1 is downregulated by autophagy in senescence and ageing publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00579-5 |
SSID | ssj0001523 |
Score | 2.478527 |
Snippet | The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106841 |
SubjectTerms | Acetylation - drug effects apoptosis Apoptosis - drug effects Cell Line, Tumor Cell Nucleus - metabolism cytoplasm-localized SIRT1 Humans nuclear-localized SIRT1 p53 Sirtuin 1 - genetics Sirtuin 1 - metabolism Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
Title | Nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53 |
URI | https://dx.doi.org/10.1016/j.biocel.2025.106841 https://www.ncbi.nlm.nih.gov/pubmed/40752826 https://www.proquest.com/docview/3235963809 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRQguFbR8bIHKSIib2U38keyNZUW1BbEH2kq9WXbsFCORjbopUjnw25lxEhCHColbYtmKNWPNe868sQFeCe0qK3zBXU1XmHnleakLyR3S-0J5V5fpyPxPa706lx8u1MUOLMdaGJJVDrG_j-kpWg8t08Ga0zbG6WkmFGURKS9H-R0q-JWyoFX-5ucfmQfiUxLZY2dOvcfyuaTxchFBghIQucImXcrsNni6jX4mGDp-AHsDf2SLfooPYSc0-3CwaHDv_O2GvWZJ0Zl-le_D3Xfj073leK_bAbxd0xHG9oonGIs_gmenJ5_PMhabL9HFbstsu2m7zTZu2fdomcegGbob0sw1l6xV4hGcH78_W674cI8Cr_K87DhSNoe7tqKoEM0zH2SpkbfVc0L7gBRhVvvcu0yVdY2Ije7JkjjGVtpRkV4hHsNus2nCU2AzF8py7oN2WSXlXNrcWx0EusB6gVRhAnw0n2n74zLMqCP7anpzGzK36c09gWK0sfnL7QYj-j9GvhxdYtCAlOawTdhcb43IhaKwMptP4Envq99zwe2rwlWoD__7u8_gPr31er7nsNtdXYcXyEs6d5QW3hHcWZx8XK1_ARcl3qk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH50KaO7lK7dunS_NBi7icSWJSu3ZWElWdsc1hR6E5IlbyrMMY07aP_6Psl2oYcy2M3IEhbvifd98vv0BPCZCVNoZnNqynCFmeWWSpFn1CC9z7k1pYwl88-WYn6R_bjkl1sw68_CBFllF_vbmB6jddcy6qw5qr0fnSeMhyxiyMuF_I58BtuhOhUfwPZ0cTJfPgRkhKios8f-NAzoT9BFmZfxiBMhB5FybBIyS55CqKcYaESi4z3Y7SgkmbazfAlbrtqHg2mF2-c_t-QLiaLO-Ld8H55_6592Zv3VbgfwdRmqGOtrGpHM3zlLzhc_Vwnx1W9vfLMhul7XzXrjN-Sv18Ri3HTNbZDNVb9IzdkruDj-vprNaXeVAi3SVDYUWZvBjVueFwjoiXWZFEjdykkAfIcsYVza1JqEy7JE0EYPJVEfowthwjm9nL2GQbWu3BsgY-OknFgnTFJk2STTqdXCMfSCtgzZwhBobz5VtxUzVC8lu1KtuVUwt2rNPYS8t7F65HmFQf0fIz_1LlFowJDp0JVb32wUSxkPkWU8GcJh66uHueAOluNCFEf__d2PsDNfnZ2q08Xy5C28CG9aed87GDTXN-490pTGfOiW4T3LDuFa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear-localized+SIRT1+inhibits+apoptosis+via+deacetylating+p53&rft.jtitle=The+international+journal+of+biochemistry+%26+cell+biology&rft.au=Cheng%2C+Lin&rft.au=Wu%2C+Ge&rft.au=Yao%2C+Wei&rft.au=Deng%2C+Kangrong&rft.date=2025-10-01&rft.issn=1878-5875&rft.eissn=1878-5875&rft.spage=106841&rft_id=info:doi/10.1016%2Fj.biocel.2025.106841&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1357-2725&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1357-2725&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1357-2725&client=summon |