Nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53

The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis,...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biochemistry & cell biology Vol. 187; p. 106841
Main Authors Cheng, Lin, Wu, Ge, Yao, Wei, Deng, Kangrong, Zhang, Chunsun, Chen, Tongsheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The function of silencing information regulator 1 (SIRT1) in promoting or inhibiting apoptosis remains a subject of debate. Here, we aim to evaluate the roles of nuclear-localized SIRT1 in STS/DOX-induced apoptosis. Silencing nuclear-localized SIRT1 significantly enhanced STS/DOX-induced apoptosis, while overexpression of nuclear-localized SIRT1 markedly inhibited STS/DOX-induced process, demonstrating the anti-apoptotic ability of the nuclear-localized SIRT1. Critically, silencing p53 compromised the anti-apoptotic function of nuclear-localized SIRT1, thereby underscoring the essential role of p53 in mediating SIRT1's anti-apoptotic capability. Western blot analysis further revealed that wild-type SIRT1 robustly downregulated Ac-p53 expression to inhibit apoptosis, whereas a deacetylase-defective mutant of SIRT1 (SIRT1H363Y) markedly upregulated Ac-p53 to promote apoptosis. Fluorescence resonance energy transfer (FRET) analyses for the cells co-expressing nuclear-localized SIRT1-CFP and p53-YFP showed that STS enhanced the direct interaction between SIRT1 and p53 in nucleus, suggesting that the nuclear-localized SIRT1 directly interacts with p53 to deacetylate p53, thus inhibiting apoptosis. On the contrary,overexpression of cytoplasm-localized SIRT1 markedly promoted STS/DOX-induced apoptosis, firmly demonstrating the pro-apoptotic ability of the cytoplasm-localized SIRT1. These results firmly demonstrate a notion that nuclear-localized SIRT1 inhibits apoptosis via deacetylating p53.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1357-2725
1878-5875
1878-5875
DOI:10.1016/j.biocel.2025.106841