On the Stability of DNA Origami Nanostructures in Low‐Magnesium Buffers

DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stab...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 130; no. 30; pp. 9614 - 9618
Main Authors Kielar, Charlotte, Xin, Yang, Shen, Boxuan, Kostiainen, Mauri A., Grundmeier, Guido, Linko, Veikko, Keller, Adrian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range. DNA‐Origami‐Nanostrukturen wurden hinsichtlich ihrer Stabilität in verschiedenen Tris‐ und Phosphatpuffern bei Mg2+‐Konzentrationen im niedrigen mikromolaren Bereich untersucht. Ihre Stabilität wurde durch EDTA‐ und Phosphat‐Ionen gesenkt, die Mg2+‐Ionen vom DNA‐Rückgrat abziehen bzw. die Mg2+‐DNA‐Wechselwirkung schwächen. Diese Effekte waren für verschiedene DNA‐Origami‐Überstrukturen unterschiedlich ausgeprägt.
Bibliography:These authors contributed equally to this work.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201802890