Localization of lysosomal and digestive enzymes in cytoplasmic vacuoles in caerulein-pancreatitis

Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B, N-acetyl-beta-glucosaminidase, and beta-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000 g fra...

Full description

Saved in:
Bibliographic Details
Published inHistochemistry (Berlin) Vol. 94; no. 2; p. 161
Main Authors Willemer, S, Bialek, R, Adler, G
Format Journal Article
LanguageEnglish
Published Germany 01.06.1990
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B, N-acetyl-beta-glucosaminidase, and beta-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000 g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.
ISSN:0301-5564
DOI:10.1007/BF02440183