Generalized homogenization method for subwavelength periodic lattices

Periodic photonic lattices based on Guided-Mode Resonance (GMR) enable the manipulation of the incident light, making them essential components in a plethora of optical elements including filters, sensors, lasers, and polarizers. The GMR is regarded as a resonance phenomenon in the resonant-subwavel...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 23; pp. 42712 - 42727
Main Authors Taheri, Atefe, Shokooh-Saremi, Mehrdad
Format Journal Article
LanguageEnglish
Published 07.11.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Periodic photonic lattices based on Guided-Mode Resonance (GMR) enable the manipulation of the incident light, making them essential components in a plethora of optical elements including filters, sensors, lasers, and polarizers. The GMR is regarded as a resonance phenomenon in the resonant-subwavelength regime of periodic lattices. We present a method that homogenizes these periodic structures in the subwavelength regime and provides an appropriate analytical interpretation of the resonance effect. Here, we propose a technique based on utilizing the dispersion relation for homogenization, which can be applied to multi-part period lattices under oblique incidence. The effect of asymmetry and emergence of the odd/even modes, not considered in previous methods, will also be taken into account and discussed. As a result of this analytical procedure, resonance lines are obtained, which are useful in designing optical elements such as wideband/narrowband reflectors and polarizers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.473746