Hand gestures recognition in videos taken with a lensless camera

A lensless camera is an imaging system that uses a mask in place of a lens, making it thinner, lighter, and less expensive than a lensed camera. However, additional complex computation and time are required for image reconstruction. This work proposes a deep learning model named Raw3dNet that recogn...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 22; pp. 39520 - 39533
Main Authors Zhang, Yinger, Wu, Zhouyi, Lin, Peiying, Pan, Yang, Wu, Yuting, Zhang, Liufang, Huangfu, Jiangtao
Format Journal Article
LanguageEnglish
Published 24.10.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:A lensless camera is an imaging system that uses a mask in place of a lens, making it thinner, lighter, and less expensive than a lensed camera. However, additional complex computation and time are required for image reconstruction. This work proposes a deep learning model named Raw3dNet that recognizes hand gestures directly on raw videos captured by a lensless camera without the need for image restoration. In addition to conserving computational resources, the reconstruction-free method provides privacy protection. Raw3dNet is a novel end-to-end deep neural network model for the recognition of hand gestures in lensless imaging systems. It is created specifically for raw video captured by a lensless camera and has the ability to properly extract and combine temporal and spatial features. The network is composed of two stages: 1. spatial feature extractor (SFE), which enhances the spatial features of each frame prior to temporal convolution; 2. 3D-ResNet, which implements spatial and temporal convolution of video streams. The proposed model achieves 98.59% accuracy on the Cambridge Hand Gesture dataset in the lensless optical experiment, which is comparable to the lensed-camera result. Additionally, the feasibility of physical object recognition is assessed. Further, we show that the recognition can be achieved with respectable accuracy using only a tiny portion of the original raw data, indicating the potential for reducing data traffic in cloud computing scenarios.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.470324