Influence of surface treatment on properties of Cocos nucifera L. Var typica fiber reinforced polymer composites

Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study expos...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 140; no. 3
Main Authors Brailson Mansingh, Bright, Binoj, Joseph Selvi, Siengchin, Suchart, Sanjay, Mavinkere Rangappa
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications.
AbstractList Abstract Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm 2 , hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications.
Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications.
Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications.
Author Siengchin, Suchart
Binoj, Joseph Selvi
Sanjay, Mavinkere Rangappa
Brailson Mansingh, Bright
Author_xml – sequence: 1
  givenname: Bright
  surname: Brailson Mansingh
  fullname: Brailson Mansingh, Bright
  organization: Sri Ramakrishna Engineering College
– sequence: 2
  givenname: Joseph Selvi
  orcidid: 0000-0002-7222-4463
  surname: Binoj
  fullname: Binoj, Joseph Selvi
  email: binojlaxman@gmail.com
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS)
– sequence: 3
  givenname: Suchart
  surname: Siengchin
  fullname: Siengchin, Suchart
  organization: King Mongkut's University of Technology North Bangkok (KMUTNB)
– sequence: 4
  givenname: Mavinkere Rangappa
  surname: Sanjay
  fullname: Sanjay, Mavinkere Rangappa
  organization: King Mongkut's University of Technology North Bangkok (KMUTNB)
BookMark eNp1kDtrwzAQgEVJoUnaof9A0KmDE0mW7WgMoY9AoBnarkaWT6BgS6pkU_zvqzRdO91x992Db4Fm1llA6J6SFSWEraX3qyLPeXGF5pSIKuMl28zQPPVothGiuEGLGE-EUFqQco783upuBKsAO43jGLRM6RBADj3YATuLfXAewmAgnpGdUy5iOyqjIUh8WOFPGfAweaMk1qaBgAMYq11Q0GLvuqlPJeV676IZIN6iay27CHd_cYk-np_ed6_Z4e1lv9seMsVYVWS8atpS8YYzJbgCXbS6pFoJ0eRtnudVURICTaM4VYTKDROKKF2yppSCCUjUEj1c9qb3v0aIQ31yY7DpZM0qXgleUEoT9XihVHAxBtC1D6aXYaopqc9C6yS0_hWa2PWF_TYdTP-D9fZ4vEz8AHW-erw
CitedBy_id crossref_primary_10_1002_pi_6589
crossref_primary_10_1002_app_53591
crossref_primary_10_1007_s13399_023_04189_7
crossref_primary_10_1007_s12633_023_02510_7
crossref_primary_10_1080_2374068X_2023_2264573
crossref_primary_10_1007_s00289_024_05360_4
crossref_primary_10_1002_app_53782
crossref_primary_10_1007_s13399_023_04599_7
crossref_primary_10_1007_s42235_023_00341_1
crossref_primary_10_1007_s13399_023_04840_3
crossref_primary_10_1038_s41598_023_39229_9
crossref_primary_10_1177_09544089241259335
crossref_primary_10_1002_app_54248
crossref_primary_10_1007_s00170_023_12152_z
Cites_doi 10.1016/j.ijbiomac.2021.07.061
10.1590/0104-1428.00516
10.1002/pc.26558
10.1016/j.engfailanal.2022.106227
10.1002/pc.26665
10.1088/2053-1591/ab54ff
10.1016/j.crgsc.2022.100284
10.1002/pc.26634
10.3390/ma12071145
10.1016/j.compstruct.2020.113496
10.1061/(ASCE)MT.1943-5533.0003456
10.1016/j.compscitech.2020.108502
10.1080/15440478.2020.1761927
10.1177/0731684418799528
10.1002/pc.26636
10.1002/pc.26629
10.1016/j.conbuildmat.2017.12.011
10.1080/15440478.2021.1982827
10.1080/09276440.2020.1826274
10.1002/pc.26608
10.1016/j.ijbiomac.2020.07.230
10.1002/app.52245
10.1002/pc.26614
10.1016/j.cej.2018.04.178
10.1080/00405000.2019.1610998
10.1007/s42114-019-00087-7
10.1016/j.crgsc.2021.100207
10.1016/j.proeng.2017.07.040
10.1016/j.compositesb.2019.106956
10.1016/j.compscitech.2020.108428
10.1002/pc.26495
10.1007/s10924-020-01900-x
10.1016/j.ijbiomac.2020.07.225
10.1080/15440478.2018.1550461
10.1016/j.ijfatigue.2017.11.004
10.1002/pc.26630
10.1016/j.carbpol.2020.115830
10.1016/j.matdes.2012.01.004
10.1016/j.ijbiomac.2020.02.134
10.1016/j.polymertesting.2019.106100
10.1016/j.cej.2021.131979
10.1016/j.ijbiomac.2020.04.117
10.1016/j.ijbiomac.2020.10.086
10.1039/D0CS01411G
10.1016/j.jclepro.2021.126337
10.1016/j.carbpol.2020.116494
10.1016/j.ijbiomac.2020.08.098
10.1002/pc.26307
10.1016/j.jmrt.2020.05.121
10.1016/j.compstruct.2021.113913
10.1016/j.crgsc.2021.100241
10.1002/pc.26666
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.53345
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_53345
APP53345
Genre researchArticle
GrantInformation_xml – fundername: Thailand Science Research and Innovation Fund
  funderid: KMUTNB‐FF‐65‐19
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2275-47bd6c4b42c94cef5df61fc99b3d33375600ebbc41c01a829c0cf62b6a929e9b3
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Thu Oct 10 17:46:40 EDT 2024
Fri Aug 23 00:42:42 EDT 2024
Sat Aug 24 01:06:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2275-47bd6c4b42c94cef5df61fc99b3d33375600ebbc41c01a829c0cf62b6a929e9b3
Notes Funding information
Thailand Science Research and Innovation Fund, Grant/Award Number: KMUTNB‐FF‐65‐19
ORCID 0000-0002-7222-4463
PQID 2747945111
PQPubID 1006379
PageCount 16
ParticipantIDs proquest_journals_2747945111
crossref_primary_10_1002_app_53345
wiley_primary_10_1002_app_53345_APP53345
PublicationCentury 2000
PublicationDate January 15, 2023
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: January 15, 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 4
2021; 42
2019; 6
2018; 162
2021; 201
2021; 267
2018; 348
2019; 2
2020; 164
2018; 108
2020; 165
2017; 27
2021; 29
2021; 28
2019; 12
2020; 161
2020; 17
2021; 186
2020; 244
2020; 200
2022; 43
2012; 37
2020; 32
2021; 50
2022; 139
2022; 136
2019; 80
2022; 5
2021
2021; 259
2020; 150
2020; 9
2021; 294
2020; 156
2020; 232
2022; 428
2017; 200
2019; 174
2018; 37
2019; 110
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
Thooyavan Y. (e_1_2_8_34_1) 2022; 136
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 4
  year: 2021
  publication-title: Cur. Res. Green. Sust. Chem
– volume: 2
  start-page: 312
  year: 2019
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 165
  start-page: 2303
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 37
  start-page: 111
  year: 2012
  publication-title: Mater. Des.
– volume: 200
  year: 2020
  publication-title: Compos. Sci. Tech.
– volume: 267
  year: 2021
  publication-title: Compos. Struct.
– volume: 9
  start-page: 8705
  year: 2020
  publication-title: J. Mater. Res. Tech.
– volume: 12
  start-page: 1145
  year: 2019
  publication-title: Material
– volume: 156
  start-page: 997
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 29
  start-page: 662
  year: 2021
  publication-title: J. Polym. Environ.
– volume: 43
  start-page: 3902
  year: 2022
  publication-title: Polym. Compos.
– volume: 161
  start-page: 1358
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 110
  start-page: 1588
  year: 2019
  publication-title: J. Text. Inst.
– volume: 43
  start-page: 1763
  year: 2022
  publication-title: Polym. Compos.
– volume: 19
  start-page: 736
  year: 2022
  publication-title: J. Nat. Fiber
– volume: 28
  start-page: 925
  year: 2021
  publication-title: Compos. Interface
– volume: 43
  start-page: 3915
  year: 2022
  publication-title: Polym. Compos.
– volume: 139
  year: 2022
  publication-title: J. Appl. Polym. Sci.
– volume: 43
  start-page: 3544
  year: 2022
  publication-title: Polym. Compos.
– volume: 348
  start-page: 109
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 3471
  year: 2022
  publication-title: Polym. Compos.
– volume: 150
  start-page: 793
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 43
  start-page: 3167
  year: 2022
  publication-title: Polym. Compos.
– volume: 136
  year: 2022
  publication-title: Eng. Failure Anal.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 80
  year: 2019
  publication-title: Polym. Test.
– volume: 186
  start-page: 886
  year: 2021
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  year: 2022
  publication-title: Cur. Res. Green. Sust. Chem
– volume: 43
  start-page: 3481
  year: 2022
  publication-title: Polym. Compos.
– volume: 164
  start-page: 1246
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 294
  year: 2021
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 309
  year: 2017
  publication-title: Polimery
– volume: 42
  start-page: 6403
  year: 2021
  publication-title: Polym. Compos.
– year: 2021
  publication-title: J. Nat. Fiber
– volume: 244
  year: 2020
  publication-title: Carbon Polym.
– volume: 43
  start-page: 2584
  year: 2022
  publication-title: Polym. Compos.
– volume: 37
  start-page: 1435
  year: 2018
  publication-title: J. Reinf. Plast. Compos.
– volume: 50
  start-page: 3824
  year: 2021
  publication-title: Chem. Soci. Rev.
– volume: 43
  start-page: 3531
  year: 2022
  publication-title: Polym. Compos.
– volume: 232
  year: 2020
  publication-title: Carbon Polym.
– volume: 259
  year: 2021
  publication-title: Compos. Struct.
– volume: 200
  start-page: 283
  year: 2017
  publication-title: Proc. Eng.
– volume: 174
  year: 2019
  publication-title: Compos. Part B. Eng.
– volume: 17
  start-page: 1026
  year: 2020
  publication-title: J. Nat. Fiber
– volume: 164
  start-page: 2247
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 43
  start-page: 3242
  year: 2022
  publication-title: Polym. Compos.
– volume: 201
  year: 2021
  publication-title: Comp. Sci. Tech.
– volume: 162
  start-page: 683
  year: 2018
  publication-title: Construct. Build. Mater.
– volume: 136
  year: 2022
  publication-title: Polym. Compos.
– volume: 108
  start-page: 96
  year: 2018
  publication-title: Int. J. Fatig.
– volume: 32
  start-page: 3456
  year: 2020
  publication-title: J. Mater. Civ. Eng.
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ijbiomac.2021.07.061
– ident: e_1_2_8_49_1
  doi: 10.1590/0104-1428.00516
– ident: e_1_2_8_40_1
  doi: 10.1002/pc.26558
– ident: e_1_2_8_9_1
  doi: 10.1016/j.engfailanal.2022.106227
– ident: e_1_2_8_3_1
  doi: 10.1002/pc.26665
– ident: e_1_2_8_21_1
  doi: 10.1088/2053-1591/ab54ff
– ident: e_1_2_8_41_1
  doi: 10.1016/j.crgsc.2022.100284
– ident: e_1_2_8_7_1
  doi: 10.1002/pc.26634
– ident: e_1_2_8_53_1
  doi: 10.3390/ma12071145
– ident: e_1_2_8_52_1
  doi: 10.1016/j.compstruct.2020.113496
– ident: e_1_2_8_43_1
  doi: 10.1061/(ASCE)MT.1943-5533.0003456
– ident: e_1_2_8_6_1
  doi: 10.1016/j.compscitech.2020.108502
– ident: e_1_2_8_48_1
  doi: 10.1080/15440478.2020.1761927
– ident: e_1_2_8_45_1
  doi: 10.1177/0731684418799528
– ident: e_1_2_8_5_1
  doi: 10.1002/pc.26636
– ident: e_1_2_8_10_1
  doi: 10.1002/pc.26629
– ident: e_1_2_8_35_1
  doi: 10.1016/j.conbuildmat.2017.12.011
– ident: e_1_2_8_39_1
  doi: 10.1080/15440478.2021.1982827
– ident: e_1_2_8_47_1
  doi: 10.1080/09276440.2020.1826274
– ident: e_1_2_8_33_1
  doi: 10.1002/pc.26608
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ijbiomac.2020.07.230
– ident: e_1_2_8_31_1
  doi: 10.1002/app.52245
– ident: e_1_2_8_28_1
  doi: 10.1002/pc.26614
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cej.2018.04.178
– ident: e_1_2_8_37_1
  doi: 10.1080/00405000.2019.1610998
– ident: e_1_2_8_8_1
  doi: 10.1007/s42114-019-00087-7
– ident: e_1_2_8_4_1
  doi: 10.1016/j.crgsc.2021.100207
– ident: e_1_2_8_36_1
  doi: 10.1016/j.proeng.2017.07.040
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compositesb.2019.106956
– ident: e_1_2_8_26_1
  doi: 10.1016/j.compscitech.2020.108428
– ident: e_1_2_8_50_1
  doi: 10.1002/pc.26495
– ident: e_1_2_8_32_1
  doi: 10.1007/s10924-020-01900-x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijbiomac.2020.07.225
– ident: e_1_2_8_42_1
  doi: 10.1080/15440478.2018.1550461
– ident: e_1_2_8_51_1
  doi: 10.1016/j.ijfatigue.2017.11.004
– ident: e_1_2_8_54_1
  doi: 10.1002/pc.26630
– ident: e_1_2_8_20_1
  doi: 10.1016/j.carbpol.2020.115830
– volume: 136
  start-page: 106227
  year: 2022
  ident: e_1_2_8_34_1
  publication-title: Polym. Compos.
  contributor:
    fullname: Thooyavan Y.
– ident: e_1_2_8_30_1
  doi: 10.1016/j.matdes.2012.01.004
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ijbiomac.2020.02.134
– ident: e_1_2_8_46_1
  doi: 10.1016/j.polymertesting.2019.106100
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cej.2021.131979
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ijbiomac.2020.04.117
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ijbiomac.2020.10.086
– ident: e_1_2_8_11_1
  doi: 10.1039/D0CS01411G
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jclepro.2021.126337
– ident: e_1_2_8_19_1
  doi: 10.1016/j.carbpol.2020.116494
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ijbiomac.2020.08.098
– ident: e_1_2_8_44_1
  doi: 10.1002/pc.26307
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jmrt.2020.05.121
– ident: e_1_2_8_24_1
  doi: 10.1016/j.compstruct.2021.113913
– ident: e_1_2_8_27_1
  doi: 10.1016/j.crgsc.2021.100241
– ident: e_1_2_8_2_1
  doi: 10.1002/pc.26666
SSID ssj0011506
Score 2.5321755
Snippet Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability....
Abstract Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms agro‐waste
Benzoyl peroxide
Biodegradability
Chemical treatment
Fiber composites
Fiber reinforced polymers
Fibers
Flexural strength
Hydrophobicity
Impact strength
Materials science
mechanical characteristics
Mechanical properties
moisture behavior
partial biodegradability
Polyester resins
Polymer matrix composites
Polymers
Potassium
Potassium permanganate
Sodium hydroxide
Stearic acid
surface modification
Surface treatment
sustainable reinforcement
Tensile strength
Thermal stability
Thermomechanical properties
Water absorption
Title Influence of surface treatment on properties of Cocos nucifera L. Var typica fiber reinforced polymer composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.53345
https://www.proquest.com/docview/2747945111
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA7Dkx78LU6nBPHgpVubpj-CpzEdKipDnHgQSvOaXNS2tNth_vXmteucgiDeQklKm5eXfHl873uEnDpC2aE2jiS1Jy3ucrMPuty1WMKU9hI7kFUW_929fzXmN8_ec4ucN7kwtT7EIuCGnlHt1-jgsSx7X6KhWAYL80gxwdxxA6RzXTwspKMQ6Pg1vcOxzJ3Ca1SFbNZbjPx-Fn0BzGWYWp0zww3y0nxhTS957U4nsgsfP8Qb__kLm2R9jj9pv14wW6Sl0m2ytqRKuEPy66ZwCc00LaeFjk1zwUinWUpzDOEXqMWKXQYZZCVNp4A0mZjedulTXNDJLDcLgGqkpNBCVQqtoBKaZ2-zd_MIyezIGFPlLhkPLx8HV9a8MIMFjAWexQOZ-MAlZyA4oE2172gQQrqJ67oBoiglJXAHbCcOmQAbtM-kHxswpkyvPbKSZqnaJ1RqwcJQxBJij4MIzO2R69DsuaEPAnzZJieNiaK81t-IaqVlFpnpi6rpa5NOY7xo7oJlhNdtgeprTpucVVb4_QVRfzSqGgd_73pIVrH0PIZjHK9DVibFVB0ZgDKRx9VK_ATwFOMu
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7ayoHtwK-BVihgIQ5c0iWO88MSl6owtVtXVWibdkFR_GJfgCRK2sP46_FLmnRMmoS4WZEdJX5-9uen730P4KMntRsb60jKBMoRvrD7oC98h2dcmyBzI9Vk8V8sw9mVOLsJbvbgc5cL0-pD9AE38oxmvyYHp4D0yU41lOpgUSJpsA-PrLv7VLjhy7dePIqgTtgSPDzH3iqCTlfI5Sf90L9Pox3EvAtUm5Pm9Cl8776xJZj8GG_Waoy_78k3_u9PPIMnWwjKJu2aeQ57On8Bh3eECY-gnHe1S1hhWL2pTGqbPSmdFTkrKYpfkRwrdZkWWNQs3yAxZVK2GLPrtGLr29KuAWaIlcIq3Yi0os5YWfy8_WUfEZ-dSGO6fglXp18vpzNnW5vBQc6jwBGRykIUSnCUAsmsJvQMSqn8zPf9iICUVgqFh66XxlyiiybkKkwtHtO21ysY5EWuj4EpI3kcy1RhGgiUkb1AChPbbTcOUWKohvChs1FSthIcSSu2zBM7fUkzfUMYddZLtl5YJ3TjliTA5g3hU2OGh1-QTFarpvH637u-h8ezy4tFspgvz9_AAVWip-iMF4xgsK42-q3FK2v1rlmWfwAWbOdG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRAcoOUhlkJrVT1wyZI4jhOrJwSseBWtECAOSFE8sS-0SZTdPWx_fT3JZnlISFVvVmRHiefhz9bnbwC-B8r4iXWBpG2kPREKlwdDEXo858ZGuR_r5hb_z2t5dicuHqKHBfjR3YVp9SHmB24UGU2-pgCvcnv4LBpKZbDoHmm0CB-EdMiXENHNXDuKkI5s-R2B5zYVUScr5PPD-dDXi9EzwnyJU5uFZrAOj90ntvySp_5krPv4541643_-w0dYmwFQdtR6zCdYMMUGrL6QJdyE6ryrXMJKy0aT2mauOaeks7JgFZ3h1yTGSl2OSyxHrJgg8WQydtVn91nNxtPKeQCzxElhtWkkWtHkrCp_TX-7R8RmJ8qYGW3B3eD09vjMm1Vm8JDzOPJErHOJQguOSiAZ1crAolI6zMMwjAlGGa1RBOgHWcIV-mgl1zJzaMy4XtuwVJSF2QGmreJJojKNWSRQxW77KGzikm4iUaHUPfjWmSitWgGOtJVa5qmbvrSZvh7sdcZLZzE4Smm_rUh-LejBQWOF91-QHg2HTWP337t-heXhySC9Or--_AwrVIaejmaCaA-WxvXE7DuwMtZfGqf8C4CK5fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+surface+treatment+on+properties+of+Cocos+nucifera+L.+Var+typica+fiber+reinforced+polymer+composites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Brailson+Mansingh%2C+Bright&rft.au=Binoj%2C+Joseph+Selvi&rft.au=Siengchin%2C+Suchart&rft.au=Sanjay%2C+Mavinkere+Rangappa&rft.date=2023-01-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=3&rft_id=info:doi/10.1002%2Fapp.53345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_53345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon