Influence of surface treatment on properties of Cocos nucifera L. Var typica fiber reinforced polymer composites
Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study expos...
Saved in:
Published in | Journal of applied polymer science Vol. 140; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.01.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications. |
---|---|
AbstractList | Abstract
Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm
2
, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications. Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications. Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF‐reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement‐matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement‐matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications. |
Author | Siengchin, Suchart Binoj, Joseph Selvi Sanjay, Mavinkere Rangappa Brailson Mansingh, Bright |
Author_xml | – sequence: 1 givenname: Bright surname: Brailson Mansingh fullname: Brailson Mansingh, Bright organization: Sri Ramakrishna Engineering College – sequence: 2 givenname: Joseph Selvi orcidid: 0000-0002-7222-4463 surname: Binoj fullname: Binoj, Joseph Selvi email: binojlaxman@gmail.com organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) – sequence: 3 givenname: Suchart surname: Siengchin fullname: Siengchin, Suchart organization: King Mongkut's University of Technology North Bangkok (KMUTNB) – sequence: 4 givenname: Mavinkere Rangappa surname: Sanjay fullname: Sanjay, Mavinkere Rangappa organization: King Mongkut's University of Technology North Bangkok (KMUTNB) |
BookMark | eNp1kDtrwzAQgEVJoUnaof9A0KmDE0mW7WgMoY9AoBnarkaWT6BgS6pkU_zvqzRdO91x992Db4Fm1llA6J6SFSWEraX3qyLPeXGF5pSIKuMl28zQPPVothGiuEGLGE-EUFqQco783upuBKsAO43jGLRM6RBADj3YATuLfXAewmAgnpGdUy5iOyqjIUh8WOFPGfAweaMk1qaBgAMYq11Q0GLvuqlPJeV676IZIN6iay27CHd_cYk-np_ed6_Z4e1lv9seMsVYVWS8atpS8YYzJbgCXbS6pFoJ0eRtnudVURICTaM4VYTKDROKKF2yppSCCUjUEj1c9qb3v0aIQ31yY7DpZM0qXgleUEoT9XihVHAxBtC1D6aXYaopqc9C6yS0_hWa2PWF_TYdTP-D9fZ4vEz8AHW-erw |
CitedBy_id | crossref_primary_10_1002_pi_6589 crossref_primary_10_1002_app_53591 crossref_primary_10_1007_s13399_023_04189_7 crossref_primary_10_1007_s12633_023_02510_7 crossref_primary_10_1080_2374068X_2023_2264573 crossref_primary_10_1007_s00289_024_05360_4 crossref_primary_10_1002_app_53782 crossref_primary_10_1007_s13399_023_04599_7 crossref_primary_10_1007_s42235_023_00341_1 crossref_primary_10_1007_s13399_023_04840_3 crossref_primary_10_1038_s41598_023_39229_9 crossref_primary_10_1177_09544089241259335 crossref_primary_10_1002_app_54248 crossref_primary_10_1007_s00170_023_12152_z |
Cites_doi | 10.1016/j.ijbiomac.2021.07.061 10.1590/0104-1428.00516 10.1002/pc.26558 10.1016/j.engfailanal.2022.106227 10.1002/pc.26665 10.1088/2053-1591/ab54ff 10.1016/j.crgsc.2022.100284 10.1002/pc.26634 10.3390/ma12071145 10.1016/j.compstruct.2020.113496 10.1061/(ASCE)MT.1943-5533.0003456 10.1016/j.compscitech.2020.108502 10.1080/15440478.2020.1761927 10.1177/0731684418799528 10.1002/pc.26636 10.1002/pc.26629 10.1016/j.conbuildmat.2017.12.011 10.1080/15440478.2021.1982827 10.1080/09276440.2020.1826274 10.1002/pc.26608 10.1016/j.ijbiomac.2020.07.230 10.1002/app.52245 10.1002/pc.26614 10.1016/j.cej.2018.04.178 10.1080/00405000.2019.1610998 10.1007/s42114-019-00087-7 10.1016/j.crgsc.2021.100207 10.1016/j.proeng.2017.07.040 10.1016/j.compositesb.2019.106956 10.1016/j.compscitech.2020.108428 10.1002/pc.26495 10.1007/s10924-020-01900-x 10.1016/j.ijbiomac.2020.07.225 10.1080/15440478.2018.1550461 10.1016/j.ijfatigue.2017.11.004 10.1002/pc.26630 10.1016/j.carbpol.2020.115830 10.1016/j.matdes.2012.01.004 10.1016/j.ijbiomac.2020.02.134 10.1016/j.polymertesting.2019.106100 10.1016/j.cej.2021.131979 10.1016/j.ijbiomac.2020.04.117 10.1016/j.ijbiomac.2020.10.086 10.1039/D0CS01411G 10.1016/j.jclepro.2021.126337 10.1016/j.carbpol.2020.116494 10.1016/j.ijbiomac.2020.08.098 10.1002/pc.26307 10.1016/j.jmrt.2020.05.121 10.1016/j.compstruct.2021.113913 10.1016/j.crgsc.2021.100241 10.1002/pc.26666 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.53345 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_53345 APP53345 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Thailand Science Research and Innovation Fund funderid: KMUTNB‐FF‐65‐19 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c2275-47bd6c4b42c94cef5df61fc99b3d33375600ebbc41c01a829c0cf62b6a929e9b3 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Thu Oct 10 17:46:40 EDT 2024 Fri Aug 23 00:42:42 EDT 2024 Sat Aug 24 01:06:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2275-47bd6c4b42c94cef5df61fc99b3d33375600ebbc41c01a829c0cf62b6a929e9b3 |
Notes | Funding information Thailand Science Research and Innovation Fund, Grant/Award Number: KMUTNB‐FF‐65‐19 |
ORCID | 0000-0002-7222-4463 |
PQID | 2747945111 |
PQPubID | 1006379 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2747945111 crossref_primary_10_1002_app_53345 wiley_primary_10_1002_app_53345_APP53345 |
PublicationCentury | 2000 |
PublicationDate | January 15, 2023 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: January 15, 2023 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 4 2021; 42 2019; 6 2018; 162 2021; 201 2021; 267 2018; 348 2019; 2 2020; 164 2018; 108 2020; 165 2017; 27 2021; 29 2021; 28 2019; 12 2020; 161 2020; 17 2021; 186 2020; 244 2020; 200 2022; 43 2012; 37 2020; 32 2021; 50 2022; 139 2022; 136 2019; 80 2022; 5 2021 2021; 259 2020; 150 2020; 9 2021; 294 2020; 156 2020; 232 2022; 428 2017; 200 2019; 174 2018; 37 2019; 110 2022; 19 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 Thooyavan Y. (e_1_2_8_34_1) 2022; 136 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 4 year: 2021 publication-title: Cur. Res. Green. Sust. Chem – volume: 2 start-page: 312 year: 2019 publication-title: Adv. Compos. Hybrid Mater. – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 165 start-page: 2303 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 37 start-page: 111 year: 2012 publication-title: Mater. Des. – volume: 200 year: 2020 publication-title: Compos. Sci. Tech. – volume: 267 year: 2021 publication-title: Compos. Struct. – volume: 9 start-page: 8705 year: 2020 publication-title: J. Mater. Res. Tech. – volume: 12 start-page: 1145 year: 2019 publication-title: Material – volume: 156 start-page: 997 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 29 start-page: 662 year: 2021 publication-title: J. Polym. Environ. – volume: 43 start-page: 3902 year: 2022 publication-title: Polym. Compos. – volume: 161 start-page: 1358 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 110 start-page: 1588 year: 2019 publication-title: J. Text. Inst. – volume: 43 start-page: 1763 year: 2022 publication-title: Polym. Compos. – volume: 19 start-page: 736 year: 2022 publication-title: J. Nat. Fiber – volume: 28 start-page: 925 year: 2021 publication-title: Compos. Interface – volume: 43 start-page: 3915 year: 2022 publication-title: Polym. Compos. – volume: 139 year: 2022 publication-title: J. Appl. Polym. Sci. – volume: 43 start-page: 3544 year: 2022 publication-title: Polym. Compos. – volume: 348 start-page: 109 year: 2018 publication-title: Chem. Eng. J. – volume: 43 start-page: 3471 year: 2022 publication-title: Polym. Compos. – volume: 150 start-page: 793 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 43 start-page: 3167 year: 2022 publication-title: Polym. Compos. – volume: 136 year: 2022 publication-title: Eng. Failure Anal. – volume: 6 year: 2019 publication-title: Mater. Res. Express – volume: 80 year: 2019 publication-title: Polym. Test. – volume: 186 start-page: 886 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 5 year: 2022 publication-title: Cur. Res. Green. Sust. Chem – volume: 43 start-page: 3481 year: 2022 publication-title: Polym. Compos. – volume: 164 start-page: 1246 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 294 year: 2021 publication-title: J. Clean. Prod. – volume: 27 start-page: 309 year: 2017 publication-title: Polimery – volume: 42 start-page: 6403 year: 2021 publication-title: Polym. Compos. – year: 2021 publication-title: J. Nat. Fiber – volume: 244 year: 2020 publication-title: Carbon Polym. – volume: 43 start-page: 2584 year: 2022 publication-title: Polym. Compos. – volume: 37 start-page: 1435 year: 2018 publication-title: J. Reinf. Plast. Compos. – volume: 50 start-page: 3824 year: 2021 publication-title: Chem. Soci. Rev. – volume: 43 start-page: 3531 year: 2022 publication-title: Polym. Compos. – volume: 232 year: 2020 publication-title: Carbon Polym. – volume: 259 year: 2021 publication-title: Compos. Struct. – volume: 200 start-page: 283 year: 2017 publication-title: Proc. Eng. – volume: 174 year: 2019 publication-title: Compos. Part B. Eng. – volume: 17 start-page: 1026 year: 2020 publication-title: J. Nat. Fiber – volume: 164 start-page: 2247 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 43 start-page: 3242 year: 2022 publication-title: Polym. Compos. – volume: 201 year: 2021 publication-title: Comp. Sci. Tech. – volume: 162 start-page: 683 year: 2018 publication-title: Construct. Build. Mater. – volume: 136 year: 2022 publication-title: Polym. Compos. – volume: 108 start-page: 96 year: 2018 publication-title: Int. J. Fatig. – volume: 32 start-page: 3456 year: 2020 publication-title: J. Mater. Civ. Eng. – ident: e_1_2_8_18_1 doi: 10.1016/j.ijbiomac.2021.07.061 – ident: e_1_2_8_49_1 doi: 10.1590/0104-1428.00516 – ident: e_1_2_8_40_1 doi: 10.1002/pc.26558 – ident: e_1_2_8_9_1 doi: 10.1016/j.engfailanal.2022.106227 – ident: e_1_2_8_3_1 doi: 10.1002/pc.26665 – ident: e_1_2_8_21_1 doi: 10.1088/2053-1591/ab54ff – ident: e_1_2_8_41_1 doi: 10.1016/j.crgsc.2022.100284 – ident: e_1_2_8_7_1 doi: 10.1002/pc.26634 – ident: e_1_2_8_53_1 doi: 10.3390/ma12071145 – ident: e_1_2_8_52_1 doi: 10.1016/j.compstruct.2020.113496 – ident: e_1_2_8_43_1 doi: 10.1061/(ASCE)MT.1943-5533.0003456 – ident: e_1_2_8_6_1 doi: 10.1016/j.compscitech.2020.108502 – ident: e_1_2_8_48_1 doi: 10.1080/15440478.2020.1761927 – ident: e_1_2_8_45_1 doi: 10.1177/0731684418799528 – ident: e_1_2_8_5_1 doi: 10.1002/pc.26636 – ident: e_1_2_8_10_1 doi: 10.1002/pc.26629 – ident: e_1_2_8_35_1 doi: 10.1016/j.conbuildmat.2017.12.011 – ident: e_1_2_8_39_1 doi: 10.1080/15440478.2021.1982827 – ident: e_1_2_8_47_1 doi: 10.1080/09276440.2020.1826274 – ident: e_1_2_8_33_1 doi: 10.1002/pc.26608 – ident: e_1_2_8_16_1 doi: 10.1016/j.ijbiomac.2020.07.230 – ident: e_1_2_8_31_1 doi: 10.1002/app.52245 – ident: e_1_2_8_28_1 doi: 10.1002/pc.26614 – ident: e_1_2_8_29_1 doi: 10.1016/j.cej.2018.04.178 – ident: e_1_2_8_37_1 doi: 10.1080/00405000.2019.1610998 – ident: e_1_2_8_8_1 doi: 10.1007/s42114-019-00087-7 – ident: e_1_2_8_4_1 doi: 10.1016/j.crgsc.2021.100207 – ident: e_1_2_8_36_1 doi: 10.1016/j.proeng.2017.07.040 – ident: e_1_2_8_38_1 doi: 10.1016/j.compositesb.2019.106956 – ident: e_1_2_8_26_1 doi: 10.1016/j.compscitech.2020.108428 – ident: e_1_2_8_50_1 doi: 10.1002/pc.26495 – ident: e_1_2_8_32_1 doi: 10.1007/s10924-020-01900-x – ident: e_1_2_8_13_1 doi: 10.1016/j.ijbiomac.2020.07.225 – ident: e_1_2_8_42_1 doi: 10.1080/15440478.2018.1550461 – ident: e_1_2_8_51_1 doi: 10.1016/j.ijfatigue.2017.11.004 – ident: e_1_2_8_54_1 doi: 10.1002/pc.26630 – ident: e_1_2_8_20_1 doi: 10.1016/j.carbpol.2020.115830 – volume: 136 start-page: 106227 year: 2022 ident: e_1_2_8_34_1 publication-title: Polym. Compos. contributor: fullname: Thooyavan Y. – ident: e_1_2_8_30_1 doi: 10.1016/j.matdes.2012.01.004 – ident: e_1_2_8_17_1 doi: 10.1016/j.ijbiomac.2020.02.134 – ident: e_1_2_8_46_1 doi: 10.1016/j.polymertesting.2019.106100 – ident: e_1_2_8_22_1 doi: 10.1016/j.cej.2021.131979 – ident: e_1_2_8_12_1 doi: 10.1016/j.ijbiomac.2020.04.117 – ident: e_1_2_8_14_1 doi: 10.1016/j.ijbiomac.2020.10.086 – ident: e_1_2_8_11_1 doi: 10.1039/D0CS01411G – ident: e_1_2_8_23_1 doi: 10.1016/j.jclepro.2021.126337 – ident: e_1_2_8_19_1 doi: 10.1016/j.carbpol.2020.116494 – ident: e_1_2_8_15_1 doi: 10.1016/j.ijbiomac.2020.08.098 – ident: e_1_2_8_44_1 doi: 10.1002/pc.26307 – ident: e_1_2_8_25_1 doi: 10.1016/j.jmrt.2020.05.121 – ident: e_1_2_8_24_1 doi: 10.1016/j.compstruct.2021.113913 – ident: e_1_2_8_27_1 doi: 10.1016/j.crgsc.2021.100241 – ident: e_1_2_8_2_1 doi: 10.1002/pc.26666 |
SSID | ssj0011506 |
Score | 2.5321755 |
Snippet | Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability.... Abstract Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | agro‐waste Benzoyl peroxide Biodegradability Chemical treatment Fiber composites Fiber reinforced polymers Fibers Flexural strength Hydrophobicity Impact strength Materials science mechanical characteristics Mechanical properties moisture behavior partial biodegradability Polyester resins Polymer matrix composites Polymers Potassium Potassium permanganate Sodium hydroxide Stearic acid surface modification Surface treatment sustainable reinforcement Tensile strength Thermal stability Thermomechanical properties Water absorption |
Title | Influence of surface treatment on properties of Cocos nucifera L. Var typica fiber reinforced polymer composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.53345 https://www.proquest.com/docview/2747945111 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA7Dkx78LU6nBPHgpVubpj-CpzEdKipDnHgQSvOaXNS2tNth_vXmteucgiDeQklKm5eXfHl873uEnDpC2aE2jiS1Jy3ucrMPuty1WMKU9hI7kFUW_929fzXmN8_ec4ucN7kwtT7EIuCGnlHt1-jgsSx7X6KhWAYL80gxwdxxA6RzXTwspKMQ6Pg1vcOxzJ3Ca1SFbNZbjPx-Fn0BzGWYWp0zww3y0nxhTS957U4nsgsfP8Qb__kLm2R9jj9pv14wW6Sl0m2ytqRKuEPy66ZwCc00LaeFjk1zwUinWUpzDOEXqMWKXQYZZCVNp4A0mZjedulTXNDJLDcLgGqkpNBCVQqtoBKaZ2-zd_MIyezIGFPlLhkPLx8HV9a8MIMFjAWexQOZ-MAlZyA4oE2172gQQrqJ67oBoiglJXAHbCcOmQAbtM-kHxswpkyvPbKSZqnaJ1RqwcJQxBJij4MIzO2R69DsuaEPAnzZJieNiaK81t-IaqVlFpnpi6rpa5NOY7xo7oJlhNdtgeprTpucVVb4_QVRfzSqGgd_73pIVrH0PIZjHK9DVibFVB0ZgDKRx9VK_ATwFOMu |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7ayoHtwK-BVihgIQ5c0iWO88MSl6owtVtXVWibdkFR_GJfgCRK2sP46_FLmnRMmoS4WZEdJX5-9uen730P4KMntRsb60jKBMoRvrD7oC98h2dcmyBzI9Vk8V8sw9mVOLsJbvbgc5cL0-pD9AE38oxmvyYHp4D0yU41lOpgUSJpsA-PrLv7VLjhy7dePIqgTtgSPDzH3iqCTlfI5Sf90L9Pox3EvAtUm5Pm9Cl8776xJZj8GG_Waoy_78k3_u9PPIMnWwjKJu2aeQ57On8Bh3eECY-gnHe1S1hhWL2pTGqbPSmdFTkrKYpfkRwrdZkWWNQs3yAxZVK2GLPrtGLr29KuAWaIlcIq3Yi0os5YWfy8_WUfEZ-dSGO6fglXp18vpzNnW5vBQc6jwBGRykIUSnCUAsmsJvQMSqn8zPf9iICUVgqFh66XxlyiiybkKkwtHtO21ysY5EWuj4EpI3kcy1RhGgiUkb1AChPbbTcOUWKohvChs1FSthIcSSu2zBM7fUkzfUMYddZLtl5YJ3TjliTA5g3hU2OGh1-QTFarpvH637u-h8ezy4tFspgvz9_AAVWip-iMF4xgsK42-q3FK2v1rlmWfwAWbOdG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRAcoOUhlkJrVT1wyZI4jhOrJwSseBWtECAOSFE8sS-0SZTdPWx_fT3JZnlISFVvVmRHiefhz9bnbwC-B8r4iXWBpG2kPREKlwdDEXo858ZGuR_r5hb_z2t5dicuHqKHBfjR3YVp9SHmB24UGU2-pgCvcnv4LBpKZbDoHmm0CB-EdMiXENHNXDuKkI5s-R2B5zYVUScr5PPD-dDXi9EzwnyJU5uFZrAOj90ntvySp_5krPv4541643_-w0dYmwFQdtR6zCdYMMUGrL6QJdyE6ryrXMJKy0aT2mauOaeks7JgFZ3h1yTGSl2OSyxHrJgg8WQydtVn91nNxtPKeQCzxElhtWkkWtHkrCp_TX-7R8RmJ8qYGW3B3eD09vjMm1Vm8JDzOPJErHOJQguOSiAZ1crAolI6zMMwjAlGGa1RBOgHWcIV-mgl1zJzaMy4XtuwVJSF2QGmreJJojKNWSRQxW77KGzikm4iUaHUPfjWmSitWgGOtJVa5qmbvrSZvh7sdcZLZzE4Smm_rUh-LejBQWOF91-QHg2HTWP337t-heXhySC9Or--_AwrVIaejmaCaA-WxvXE7DuwMtZfGqf8C4CK5fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+surface+treatment+on+properties+of+Cocos+nucifera+L.+Var+typica+fiber+reinforced+polymer+composites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Brailson+Mansingh%2C+Bright&rft.au=Binoj%2C+Joseph+Selvi&rft.au=Siengchin%2C+Suchart&rft.au=Sanjay%2C+Mavinkere+Rangappa&rft.date=2023-01-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=3&rft_id=info:doi/10.1002%2Fapp.53345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_53345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |