3-D COUPLED SIMULATION OF A VVER 1000 WITH PARCS/ATHLET

A new OECD/NEA benchmark entitled “Reactivity compensation with diluted boron by stepwise insertion of control rod cluster” is starting. This benchmark, based on high quality measurements performed at the NPP Rostov Unit 2, aims to validate and assess high fidelity multi-physics simulation code capa...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 247; p. 6015
Main Authors Henry, Romain, Périn, Yann, Velkov, Kiril, Nikonov, Sergei Pavlovich
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new OECD/NEA benchmark entitled “Reactivity compensation with diluted boron by stepwise insertion of control rod cluster” is starting. This benchmark, based on high quality measurements performed at the NPP Rostov Unit 2, aims to validate and assess high fidelity multi-physics simulation code capabilities. The Benchmark is divided in two phases: assembly wise and pin-by-pin resolution of steady-state and transient multi-physics problems. Multi-physics simulation requires the generation of parametrized few-group cross-sections. This task used to be done with deterministic (2-D) lattice codes, but in the past few years the Monte-Carlo code SERPENT has demonstrate its ability to generate accurate few-group homogenized cross-section without approximations, neither on the geometry nor in the nuclear data. Since the whole core SERPENT models for production of such cross-section libraries would be computationally costly (and the standard 2-D approach may introduce unnecessary large approximations), 3-D models of each assembly type in infinite radial lattice configurations have been created. These cross-sections are then used to evaluate effective multiplication factors for different core configurations with the diffusion code PARCS. The results are compared with the reference SERPENT calculations. In the next step, a thermal-hydraulic model with the system code ATHLET applying an assembly-wise description of the core (i.e. one channel per fuel assembly) has been developed for coupled PARCS/ATHLET transient test calculations. This paper describes in detail the models and techniques used for the generation of the few-group parameterized cross section libraries, the PARCS model and the ATHLET model. Additionally, a simple exercise with coupled code system PARCS/ATHLET is presented and analysed.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202124706015