Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well
In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well <disp-formula> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left \{\begin{array}{ll} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 3; pp. 6432 - 6446 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well
<disp-formula> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left \{\begin{array}{ll} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\ \ \mbox{in}\ \mathbb{R}^3,\\ \\ u\in H^1(\mathbb{R}^3), \\ \end{array} \right. \label{1} \end{eqnarray*} $\end{document} </tex-math></disp-formula>
where $ a $ and $ b $ are positive constants, $ \lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\in C(\mathbb{R}^3, \mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \lambda\rightarrow \infty $ is also explored. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023325 |