Conversion of a Waste Gas to Liquid Natural Gas
The choice of liquefied natural gas (LNG) as a heavy-duty vehicular fuel is growing rapidly due to improved LNG economics, diesel price uncertainties caused by the dependence on imported crude oil, liabilities associated with environmental and health concerns, and governmental programs related to co...
Saved in:
Published in | Advances in Cryogenic Engineering; Volume 49A Vol. 710; pp. 83 - 90 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
23.06.2004
|
Online Access | Get full text |
Cover
Loading…
Summary: | The choice of liquefied natural gas (LNG) as a heavy-duty vehicular fuel is growing rapidly due to improved LNG economics, diesel price uncertainties caused by the dependence on imported crude oil, liabilities associated with environmental and health concerns, and governmental programs related to concerns over greenhouse gas emissions. However, vehicle owners who wish to use LNG are impeded by a lack of refueling infrastructure and reliable supply of inexpensive fuel. These barriers are being overcome by the development of innovative purifier/liquefier systems that economically convert a wide array of distributed, low cost methane gas sources into high quality LNG. This paper describes the engineering design, manufacture, installation, and initial operations of two such systems. One unit was a pilot-scale system using an innovative cryogenic freezing process to remove bulk concentrations of carbon dioxide from the landfill gas (LFG). The second unit converts stranded well gas containing ~ 18% nitrogen gas into LNG. The paper closes with a summary of lessons learned from these two installations and directions for future improvements. |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
ISBN: | 9780735403840 0735403848 |
ISSN: | 0094-243X |
DOI: | 10.1063/1.1774670 |