Unilateral global interval bifurcation and one-sign solutions for Kirchhoff type problems
In this paper, we study the following Kirchhoff type problems: <disp-formula> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{l} -(\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u^{3}+g(u, \lambda), \, \, \, \, \, \, \, \, \mathrm{in}\, \, \Omega,\\ u = 0, \, \, \...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 7; pp. 19546 - 19556 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we study the following Kirchhoff type problems:
<disp-formula> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{l} -(\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u^{3}+g(u, \lambda), \, \, \, \, \, \, \, \, \mathrm{in}\, \, \Omega,\\ u = 0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \mathrm{on}\, \, \partial\Omega, \end{array} \right. $\end{document} </tex-math></disp-formula>
where $ \lambda $ is a parameter. Under some natural hypotheses on $ g $ and $ \Omega $, we establish a unilateral global bifurcation result from interval for the above problem. By applying the above result, under some suitable assumptions on nonlinearity, we shall investigate the existence of one-sign solutions for a class of Kirchhoff type problems. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024953 |