Neonatal undernutrition induced by litter size expansion alters testicular parameters in adult Wistar rats
Several models of maternal undernutrition reveal impairment of testicular development and compromise spermatogenesis in male offspring. The expansion of the litter size model, valuable for studying the impact of undernutrition on early development, has not yet been used to evaluate the consequences...
Saved in:
Published in | British journal of nutrition p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
11.10.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Several models of maternal undernutrition reveal impairment of testicular development and compromise spermatogenesis in male offspring. The expansion of the litter size model, valuable for studying the impact of undernutrition on early development, has not yet been used to evaluate the consequences of early undernutrition in the adult male reproductive system. For this purpose, pups were raised in either normal litter (ten pups/dam) or large litter (LL; sixteen pups/dam). On postnatal day 90, sexual behaviour was evaluated or blood, adipose and reproductive tissues were collected for biochemical, histological and morphological analysis. Adult LL animals were lighter and thinner than controls. They showed increased food intake, but decrease of retroperitoneal white adipose tissue weight, glycaemia after oral glucose overload and plasma concentration of cholesterol. Reproductive organ weights were not altered by undernutrition, but histopathological analysis revealed an increased number of abnormal seminiferous tubules and number of immature spermatids in the tubular lumen of LL animals. These animals also showed reduction in total spermatic reserve and daily sperm production in the testes. Undernutrition decreased the number of Sertoli cells, and testosterone production was increased in the LL group. Mitochondrial activity of spermatozoa remained unchanged between experimental groups, suggesting no significant impact on the energy-related processes associated with sperm function. All animals from both experimental groups were considered sexually competent, with no significant difference in the parameters of sexual behaviour. We conclude that neonatal undernutrition induces histological and physiological testicular changes, without altering sperm quality and sexual behaviour of animals. |
---|---|
ISSN: | 1475-2662 |
DOI: | 10.1017/S0007114524002149 |