Integration of the modified double layer potential of the vector boundary element method for eddy current problems

The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 34; no. 2; pp. 385 - 407
Main Authors SIVAK, S., STUPAKOV, I., ROYAK, M., ROYAK, S.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.04.2023
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792522000183

Cover

Abstract The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.
AbstractList The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.
The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.
Author ROYAK, M.
STUPAKOV, I.
ROYAK, S.
SIVAK, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-4740-2210
  surname: SIVAK
  fullname: SIVAK, S.
– sequence: 2
  givenname: I.
  orcidid: 0000-0003-1094-3961
  surname: STUPAKOV
  fullname: STUPAKOV, I.
– sequence: 3
  givenname: M.
  orcidid: 0000-0001-8304-7784
  surname: ROYAK
  fullname: ROYAK, M.
– sequence: 4
  givenname: S.
  surname: ROYAK
  fullname: ROYAK, S.
BookMark eNplkE9LxDAUxIMouLv6AbwFPFfzkrZJjrL4Z2HBg3ouafPqdmmbNUmF_famrJ48PZj5McObJTkf3YiE3AC7Awby_o3popSaF5wzxkCJM7KAvNRZnvPinCxmO5v9S7IMYZ8QwaReEL8ZI356Ezs3UtfSuEM6ONu1HVpq3VT3SHtzRE8PLuIYO9P_Yd_YROdp7abRGn-k2OOQCDpg3DlL2-ShtUfaTN7P-sG7lDaEK3LRmj7g9e9dkY-nx_f1S7Z9fd6sH7ZZw3kRs7YQtTUalG5KxRWXpWTM5EoYA8LIXOS2kKVphOBgaqxzbQEkyNYq0GgbsSK3p9xU_DVhiNXeTX5MlRVXIKRUwGSi4EQ13oXgsa0OvhvSPxWwap62-jet-AEMoG6e
Cites_doi 10.1137/1.9781611973167
10.1016/j.jcp.2019.108976
10.1007/978-3-642-55745-3_8
10.2495/BE420111
10.1137/17M1121615
10.1109/APEIE52976.2021.9647694
10.1103/PhysRev.56.99
10.1002/nme.810
10.1109/TAP.2013.2238880
10.1109/TAP.2012.2227922
10.1007/s11075-007-9134-y
10.1109/APEIE.2016.7806945
10.1109/TAP.2013.2252137
10.1007/s10665-004-2116-3
10.1007/s10921-018-0521-1
10.1016/j.jcp.2019.03.024
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792522000183
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 407
ExternalDocumentID 10_1017_S0956792522000183
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABEFU
ABGDZ
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMVHM
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c225t-f53bda9189c6828276700a483aa13a7434d576ac3321abeb49d11717fd819edc3
IEDL.DBID 8FG
ISSN 0956-7925
IngestDate Sat Sep 06 11:47:54 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-f53bda9189c6828276700a483aa13a7434d576ac3321abeb49d11717fd819edc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8304-7784
0000-0003-1094-3961
0000-0003-4740-2210
PQID 2813778107
PQPubID 37129
PageCount 23
ParticipantIDs proquest_journals_2813778107
crossref_primary_10_1017_S0956792522000183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Steinbach (S0956792522000183_ref20) 2007
S0956792522000183_ref9
S0956792522000183_ref8
S0956792522000183_ref7
S0956792522000183_ref6
S0956792522000183_ref2
S0956792522000183_ref24
S0956792522000183_ref25
S0956792522000183_ref22
S0956792522000183_ref23
S0956792522000183_ref21
Borisenko (S0956792522000183_ref4) 1968
Bossavit (S0956792522000183_ref5) 1998
Jin (S0956792522000183_ref13) 2015
S0956792522000183_ref1
S0956792522000183_ref15
S0956792522000183_ref16
S0956792522000183_ref14
S0956792522000183_ref11
S0956792522000183_ref12
Borisenko (S0956792522000183_ref3) 1963
S0956792522000183_ref10
S0956792522000183_ref19
S0956792522000183_ref17
S0956792522000183_ref18
References_xml – ident: S0956792522000183_ref9
  doi: 10.1137/1.9781611973167
– ident: S0956792522000183_ref25
  doi: 10.1016/j.jcp.2019.108976
– ident: S0956792522000183_ref10
  doi: 10.1007/978-3-642-55745-3_8
– volume-title: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements
  year: 1998
  ident: S0956792522000183_ref5
– volume-title: Vector and Tensor Analysis with Applications
  year: 1968
  ident: S0956792522000183_ref4
– ident: S0956792522000183_ref22
  doi: 10.2495/BE420111
– ident: S0956792522000183_ref8
– ident: S0956792522000183_ref1
  doi: 10.1137/17M1121615
– ident: S0956792522000183_ref19
  doi: 10.1109/APEIE52976.2021.9647694
– ident: S0956792522000183_ref21
  doi: 10.1103/PhysRev.56.99
– ident: S0956792522000183_ref12
  doi: 10.1002/nme.810
– ident: S0956792522000183_ref17
– ident: S0956792522000183_ref15
  doi: 10.1109/TAP.2013.2238880
– volume-title: The Finite Element Method in Electromagnetics
  year: 2015
  ident: S0956792522000183_ref13
– ident: S0956792522000183_ref23
  doi: 10.1109/TAP.2012.2227922
– volume-title: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements
  year: 2007
  ident: S0956792522000183_ref20
– ident: S0956792522000183_ref14
  doi: 10.1007/s11075-007-9134-y
– volume-title: Vektornyi analiz i nachala tenzornogo ischisleniia
  year: 1963
  ident: S0956792522000183_ref3
– ident: S0956792522000183_ref18
  doi: 10.1109/APEIE.2016.7806945
– ident: S0956792522000183_ref6
  doi: 10.1109/TAP.2013.2252137
– ident: S0956792522000183_ref11
  doi: 10.1007/s10665-004-2116-3
– ident: S0956792522000183_ref2
  doi: 10.1007/s10921-018-0521-1
– ident: S0956792522000183_ref24
  doi: 10.1016/j.jcp.2019.03.024
– ident: S0956792522000183_ref16
– ident: S0956792522000183_ref7
SSID ssj0013079
Score 2.2994852
Snippet The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 385
SubjectTerms Applied mathematics
Boundary element method
Eddy currents
Electric double layer
Exact solutions
Far fields
Linear algebra
Matrices (mathematics)
Matrix algebra
Permeability
Singularity (mathematics)
Title Integration of the modified double layer potential of the vector boundary element method for eddy current problems
URI https://www.proquest.com/docview/2813778107
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHDl4EopNkzbpSVQ2p7Ah4mC3kjQpCHOdayfsv_elTR1D8JqUHN5r8r738vJ9CF0bFQYK0goPco_MY7EgntJae0JS5QvDtaoehY3G0XDCXqbh1BXcCtdW2ZyJ1UGt89TWyG8DYbnxBCx7t_jyrGqUvV11Ehq7qE0g0tj_XAyeNrcI_oZrj8dB2NxqVpTRMGjHAvtWhQi6HZe2j-Uq1gwO0YEDifi-9uoR2jHzY7Q_-mVYLU7Q8tnxPIBdcZ5hmMKfuf7IAFJina_UzOCZBDyNF3lpO4JgPffZd1Wox6oSVFqusak7yHEtJo0BxWKj9RqnNXUTdpozxSmaDPrvj0PP6Sd4KezS0stCqrSMiYjTCBKrgNsnOZIJKiWhEqAD05BtyJTSgEhlFIs1IZDeZRpggtEpPUOteT435wgbTjSTmc8jFkHYC0SY-b5SmvPIUMbSDrpprJcsapqMpO4f48kfU3dQt7Fv4nZMkWz8e_H_9CXas5LvdfdMF7XK5cpcATAoVa_yfg-1H_rj17cfl6G3uQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ine5AAXpIo2Sdv0gBBPbewhhIbErSRNKiHBOrYB2p_iN-L0wTQhceOaVD44TmzX9vcBHBrlU4VphYO5R-rwSHiO0lo7QjLlChNqlQ-FtTtB_YHfPvqPM_BVzcLYtsrqTcwfap0l9h_5CRUWG0-g2LP-m2NZo2x1taLQKMyiacafmLINTxtXeL5HlN5cdy_rTskq4CRouyMn9ZnSMvJElASYbtDQDqpILpiUHpPoULnGGFwmjFFPKqN4pD0Pk55Uo_M0OmEodxbmuJ1orcHcxXXn7n5St3An6H5hRP2qjpqDVOOiXaN2OsYTbNoTTjuC3LvdLMNSGZaS88KOVmDG9FZhsf2D6Tpcg0GjRJbAkyRZSnCLvGb6OcUglujsXb0Y8iIxgif9bGR7kFBe-dlHXhogKqdwGoyJKXrWSUFfTTBuJkbrMUkKsChSstwM1-HhX3S7AbVe1jObQEzoaS5TNwx4gI6WCj91XaV0GAaGcZ5swXGlvbhfAHPERcdaGP9S9RbsVvqNyzs6jCcWtf339gHM17vtVtxqdJo7sGAJ54venV2ojQbvZg_DkpHaL22BwNN_m983XQ_zag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+the+modified+double+layer+potential+of+the+vector+boundary+element+method+for+eddy+current+problems&rft.jtitle=European+journal+of+applied+mathematics&rft.au=SIVAK%2C+S.&rft.au=STUPAKOV%2C+I.&rft.au=ROYAK%2C+M.&rft.au=ROYAK%2C+S.&rft.date=2023-04-01&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=34&rft.issue=2&rft.spage=385&rft.epage=407&rft_id=info:doi/10.1017%2FS0956792522000183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0956792522000183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon