Integration of the modified double layer potential of the vector boundary element method for eddy current problems
The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations...
Saved in:
Published in | European journal of applied mathematics Vol. 34; no. 2; pp. 385 - 407 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792522000183 |
Cover
Abstract | The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested
modified double layer potential
(MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions. |
---|---|
AbstractList | The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested
modified double layer potential
(MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions. The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions. |
Author | ROYAK, M. STUPAKOV, I. ROYAK, S. SIVAK, S. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-4740-2210 surname: SIVAK fullname: SIVAK, S. – sequence: 2 givenname: I. orcidid: 0000-0003-1094-3961 surname: STUPAKOV fullname: STUPAKOV, I. – sequence: 3 givenname: M. orcidid: 0000-0001-8304-7784 surname: ROYAK fullname: ROYAK, M. – sequence: 4 givenname: S. surname: ROYAK fullname: ROYAK, S. |
BookMark | eNplkE9LxDAUxIMouLv6AbwFPFfzkrZJjrL4Z2HBg3ouafPqdmmbNUmF_famrJ48PZj5McObJTkf3YiE3AC7Awby_o3popSaF5wzxkCJM7KAvNRZnvPinCxmO5v9S7IMYZ8QwaReEL8ZI356Ezs3UtfSuEM6ONu1HVpq3VT3SHtzRE8PLuIYO9P_Yd_YROdp7abRGn-k2OOQCDpg3DlL2-ShtUfaTN7P-sG7lDaEK3LRmj7g9e9dkY-nx_f1S7Z9fd6sH7ZZw3kRs7YQtTUalG5KxRWXpWTM5EoYA8LIXOS2kKVphOBgaqxzbQEkyNYq0GgbsSK3p9xU_DVhiNXeTX5MlRVXIKRUwGSi4EQ13oXgsa0OvhvSPxWwap62-jet-AEMoG6e |
Cites_doi | 10.1137/1.9781611973167 10.1016/j.jcp.2019.108976 10.1007/978-3-642-55745-3_8 10.2495/BE420111 10.1137/17M1121615 10.1109/APEIE52976.2021.9647694 10.1103/PhysRev.56.99 10.1002/nme.810 10.1109/TAP.2013.2238880 10.1109/TAP.2012.2227922 10.1007/s11075-007-9134-y 10.1109/APEIE.2016.7806945 10.1109/TAP.2013.2252137 10.1007/s10665-004-2116-3 10.1007/s10921-018-0521-1 10.1016/j.jcp.2019.03.024 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792522000183 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Engineering Database (ProQuest) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 407 |
ExternalDocumentID | 10_1017_S0956792522000183 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB AAYXX ABBXD ABBZL ABEFU ABGDZ ABHFL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ABZUI ACAJB ACBMC ACDLN ACEJA ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACOZI ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AGQPQ AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AMVHM ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ GROUPED_DOAJ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c225t-f53bda9189c6828276700a483aa13a7434d576ac3321abeb49d11717fd819edc3 |
IEDL.DBID | 8FG |
ISSN | 0956-7925 |
IngestDate | Sat Sep 06 11:47:54 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c225t-f53bda9189c6828276700a483aa13a7434d576ac3321abeb49d11717fd819edc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8304-7784 0000-0003-1094-3961 0000-0003-4740-2210 |
PQID | 2813778107 |
PQPubID | 37129 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2813778107 crossref_primary_10_1017_S0956792522000183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Steinbach (S0956792522000183_ref20) 2007 S0956792522000183_ref9 S0956792522000183_ref8 S0956792522000183_ref7 S0956792522000183_ref6 S0956792522000183_ref2 S0956792522000183_ref24 S0956792522000183_ref25 S0956792522000183_ref22 S0956792522000183_ref23 S0956792522000183_ref21 Borisenko (S0956792522000183_ref4) 1968 Bossavit (S0956792522000183_ref5) 1998 Jin (S0956792522000183_ref13) 2015 S0956792522000183_ref1 S0956792522000183_ref15 S0956792522000183_ref16 S0956792522000183_ref14 S0956792522000183_ref11 S0956792522000183_ref12 Borisenko (S0956792522000183_ref3) 1963 S0956792522000183_ref10 S0956792522000183_ref19 S0956792522000183_ref17 S0956792522000183_ref18 |
References_xml | – ident: S0956792522000183_ref9 doi: 10.1137/1.9781611973167 – ident: S0956792522000183_ref25 doi: 10.1016/j.jcp.2019.108976 – ident: S0956792522000183_ref10 doi: 10.1007/978-3-642-55745-3_8 – volume-title: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements year: 1998 ident: S0956792522000183_ref5 – volume-title: Vector and Tensor Analysis with Applications year: 1968 ident: S0956792522000183_ref4 – ident: S0956792522000183_ref22 doi: 10.2495/BE420111 – ident: S0956792522000183_ref8 – ident: S0956792522000183_ref1 doi: 10.1137/17M1121615 – ident: S0956792522000183_ref19 doi: 10.1109/APEIE52976.2021.9647694 – ident: S0956792522000183_ref21 doi: 10.1103/PhysRev.56.99 – ident: S0956792522000183_ref12 doi: 10.1002/nme.810 – ident: S0956792522000183_ref17 – ident: S0956792522000183_ref15 doi: 10.1109/TAP.2013.2238880 – volume-title: The Finite Element Method in Electromagnetics year: 2015 ident: S0956792522000183_ref13 – ident: S0956792522000183_ref23 doi: 10.1109/TAP.2012.2227922 – volume-title: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements year: 2007 ident: S0956792522000183_ref20 – ident: S0956792522000183_ref14 doi: 10.1007/s11075-007-9134-y – volume-title: Vektornyi analiz i nachala tenzornogo ischisleniia year: 1963 ident: S0956792522000183_ref3 – ident: S0956792522000183_ref18 doi: 10.1109/APEIE.2016.7806945 – ident: S0956792522000183_ref6 doi: 10.1109/TAP.2013.2252137 – ident: S0956792522000183_ref11 doi: 10.1007/s10665-004-2116-3 – ident: S0956792522000183_ref2 doi: 10.1007/s10921-018-0521-1 – ident: S0956792522000183_ref24 doi: 10.1016/j.jcp.2019.03.024 – ident: S0956792522000183_ref16 – ident: S0956792522000183_ref7 |
SSID | ssj0013079 |
Score | 2.2994852 |
Snippet | The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 385 |
SubjectTerms | Applied mathematics Boundary element method Eddy currents Electric double layer Exact solutions Far fields Linear algebra Matrices (mathematics) Matrix algebra Permeability Singularity (mathematics) |
Title | Integration of the modified double layer potential of the vector boundary element method for eddy current problems |
URI | https://www.proquest.com/docview/2813778107 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHDl4EopNkzbpSVQ2p7Ah4mC3kjQpCHOdayfsv_elTR1D8JqUHN5r8r738vJ9CF0bFQYK0goPco_MY7EgntJae0JS5QvDtaoehY3G0XDCXqbh1BXcCtdW2ZyJ1UGt89TWyG8DYbnxBCx7t_jyrGqUvV11Ehq7qE0g0tj_XAyeNrcI_oZrj8dB2NxqVpTRMGjHAvtWhQi6HZe2j-Uq1gwO0YEDifi-9uoR2jHzY7Q_-mVYLU7Q8tnxPIBdcZ5hmMKfuf7IAFJina_UzOCZBDyNF3lpO4JgPffZd1Wox6oSVFqusak7yHEtJo0BxWKj9RqnNXUTdpozxSmaDPrvj0PP6Sd4KezS0stCqrSMiYjTCBKrgNsnOZIJKiWhEqAD05BtyJTSgEhlFIs1IZDeZRpggtEpPUOteT435wgbTjSTmc8jFkHYC0SY-b5SmvPIUMbSDrpprJcsapqMpO4f48kfU3dQt7Fv4nZMkWz8e_H_9CXas5LvdfdMF7XK5cpcATAoVa_yfg-1H_rj17cfl6G3uQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ine5AAXpIo2Sdv0gBBPbewhhIbErSRNKiHBOrYB2p_iN-L0wTQhceOaVD44TmzX9vcBHBrlU4VphYO5R-rwSHiO0lo7QjLlChNqlQ-FtTtB_YHfPvqPM_BVzcLYtsrqTcwfap0l9h_5CRUWG0-g2LP-m2NZo2x1taLQKMyiacafmLINTxtXeL5HlN5cdy_rTskq4CRouyMn9ZnSMvJElASYbtDQDqpILpiUHpPoULnGGFwmjFFPKqN4pD0Pk55Uo_M0OmEodxbmuJ1orcHcxXXn7n5St3An6H5hRP2qjpqDVOOiXaN2OsYTbNoTTjuC3LvdLMNSGZaS88KOVmDG9FZhsf2D6Tpcg0GjRJbAkyRZSnCLvGb6OcUglujsXb0Y8iIxgif9bGR7kFBe-dlHXhogKqdwGoyJKXrWSUFfTTBuJkbrMUkKsChSstwM1-HhX3S7AbVe1jObQEzoaS5TNwx4gI6WCj91XaV0GAaGcZ5swXGlvbhfAHPERcdaGP9S9RbsVvqNyzs6jCcWtf339gHM17vtVtxqdJo7sGAJ54venV2ojQbvZg_DkpHaL22BwNN_m983XQ_zag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+the+modified+double+layer+potential+of+the+vector+boundary+element+method+for+eddy+current+problems&rft.jtitle=European+journal+of+applied+mathematics&rft.au=SIVAK%2C+S.&rft.au=STUPAKOV%2C+I.&rft.au=ROYAK%2C+M.&rft.au=ROYAK%2C+S.&rft.date=2023-04-01&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=34&rft.issue=2&rft.spage=385&rft.epage=407&rft_id=info:doi/10.1017%2FS0956792522000183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0956792522000183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |