A prenyltransferase participates in the biosynthesis of anthraquinones in Rubia cordifolia

Anthraquinones (AQs) constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, AQs are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 195; no. 4; pp. 2860 - 2876
Main Authors Liu, Changzheng, Wang, Ruishan, Wang, Sheng, Chen, Tong, Lyu, Chaogeng, Kang, Chuanzhi, Wan, Xiufu, Guo, Juan, Li, Qi, Huang, Luqi, Guo, Lanping
Format Journal Article
LanguageEnglish
Published United States 31.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anthraquinones (AQs) constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, AQs are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type AQs, and the prenylation of 1,4-dihydroxy-2-naphthoic acid (DHNA) is the first pathway-specific step. However, the prenyltransferase (PT) responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type AQs, was discovered to be capable of prenylating DHNA to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifoliadimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the AQs content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type AQs biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type AQs biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1093/plphys/kiae171