On the sum of chemical reactions

It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often called a complex reaction in contrast to an elementary reaction. Photosynthesis $6 \text{CO}_2+6 \text{H}_2\text{O} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2$ is an example of...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 34; no. 2; pp. 303 - 325
Main Authors HOESSLY, LINARD, WIUF, CARSTEN, XIA, PANQIU
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.04.2023
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792522000146

Cover

More Information
Summary:It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often called a complex reaction in contrast to an elementary reaction. Photosynthesis $6 \text{CO}_2+6 \text{H}_2\text{O} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2$ is an example of such complex reaction. We introduce a mathematical operation that corresponds to summing two chemical reactions. Specifically, we define an associative and non-communicative operation on the product space ${\mathbb{N}}_0^n\times {\mathbb{N}}_0^n$ (representing the reactant and the product of a chemical reaction, respectively). The operation models the overall effect of two reactions happening in succession, one after the other. We study the algebraic properties of the operation and apply the results to stochastic reaction networks (RNs), in particular to reachability of states, and to reduction of RNs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792522000146