A New Real Time Energy Efficient Management of Radial Unbalance Distribution Networks Through Integration of Load Shedding and CVR

This paper elucidates a new real time energy management framework for radial active unbalance distribution networks (UDNs) by integrating load shedding and conservation voltage reduction (CVR) techniques. In contrast with the shortsighted real time optimization strategies, the proposed technique acc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 37; no. 4; pp. 2571 - 2586
Main Authors Paul, Subho, Padhy, Narayana Prasad
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper elucidates a new real time energy management framework for radial active unbalance distribution networks (UDNs) by integrating load shedding and conservation voltage reduction (CVR) techniques. In contrast with the shortsighted real time optimization strategies, the proposed technique accounts offline beneficial aspects in real time optimization platform as time coupled stochastic expressions. Those are further simplified to a mixed integer non-convex programming (MINCP) using merger of Queueing theory and Lyapunov optimization process. To solve the complex MINCP portfolio, a consecutive mixed integer linear programming (c-MILP) based solution method is proposed after adopting necessary linear approximations. After demonstrating on modified IEEE 123 bus test network, it is showed that the proposed real time strategy can provide most energy efficient, secure and reliable operation to the UDNs and can accommodate offline advantageous attributes successfully along with the real time load shedding and CVR constraints. Validating the power flow solutions at OpenDSS platform, it is proved that the proposed c-MILP approach possess fast convergence and provide near optimal power flow solutions. Further investigations certify that presence of residential consumers are more beneficial for the networks as they are more sensitive to voltage.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2021.3112340