A new SDDA-based numerical approach for simulating rock cracking induced by temperature stresses
Temperature-induced rock failure occurs in geothermal exploitation, nuclear disposal, and other underground engineering scenarios. In this paper, the conventional spherical discontinuous deformation analysis (SDDA) method is extended to simulate the temperature-induced rock failure problems. Firstly...
Saved in:
Published in | Computers and geotechnics Vol. 154; p. 105113 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Temperature-induced rock failure occurs in geothermal exploitation, nuclear disposal, and other underground engineering scenarios. In this paper, the conventional spherical discontinuous deformation analysis (SDDA) method is extended to simulate the temperature-induced rock failure problems. Firstly, an improved bonded sphere algorithm is proposed to precisely modeling rock failure behavior in the SDDA framework. Secondly, a heat conduction model based on the thermal conductivity pipe between spheres is proposed and further implemented in the SDDA program through an explicit thermal–mechanical coupling procedure. Thirdly, three typical examples are selected to verify the accuracy of the heat conduction model by comparing the temperature evolution between numerical and analytical results. Finally, the improved SDDA model was applied to analyze several experimental cases involving thermal cracking, including lab-scale experiments and field-scale examples. The simulation results show that the improved SDDA approach is effective for the simulation of the temperature-induced crack propagation process. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2022.105113 |