Summability in anisotropic mixed-norm Hardy spaces

Let $ H_A^{\vec{p}}(\mathbb{R}^n) $ be the anisotropic mixed-norm Hardy space, where $ \vec{p}\in(0, \infty)^n $ and $ A $ is a general expansive matrix on $ \mathbb{R}^n $. In this paper, a general summability method, the so-called $ \theta $-summability is considered for multi-dimensional Fourier...

Full description

Saved in:
Bibliographic Details
Published inElectronic research archive Vol. 30; no. 9; pp. 3362 - 3376
Main Author Li, Nan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let $ H_A^{\vec{p}}(\mathbb{R}^n) $ be the anisotropic mixed-norm Hardy space, where $ \vec{p}\in(0, \infty)^n $ and $ A $ is a general expansive matrix on $ \mathbb{R}^n $. In this paper, a general summability method, the so-called $ \theta $-summability is considered for multi-dimensional Fourier transforms in $ H_A^{\vec{p}}(\mathbb{R}^n) $. Precisely, the author establishes the boundedness of maximal operators, induced by the so-called $ \theta $-means, from $ H_A^{\vec{p}}(\mathbb{R}^n) $ to the mixed-norm Lebesgue space $ L^{\vec{p}}(\mathbb{R}^n) $. As applications, some norm and almost everywhere convergence results of the $ \theta $-means are presented. Finally, the corresponding conclusions of two well-known specific summability methods, namely, Bochner–Riesz and Weierstrass means, are also obtained.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2022171