A Parameterization Scheme Accounting for Nonhydrostatic Effects on the Momentum Flux of Vertically Propagating Orographic Gravity Waves: Formulas and Preliminary Tests in the Model for Prediction Across Scales (MPAS)

The momentum transport by orographic gravity waves (OGWs) plays an important role in driving the large-scale circulation throughout the atmosphere and is subject to parameterization in numerical models. Current parameterization schemes, which were originally developed for coarse-resolution models, c...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 81; no. 5; pp. 805 - 817
Main Authors Xu, Xin, Zhang, Rongrong, Teixeira, Miguel A. C., van Niekerk, Annelize, Xue, Ming, Lu, Yixiong, Xue, Haile, Li, Runqiu, Wang, Yuan
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The momentum transport by orographic gravity waves (OGWs) plays an important role in driving the large-scale circulation throughout the atmosphere and is subject to parameterization in numerical models. Current parameterization schemes, which were originally developed for coarse-resolution models, commonly assume that unresolved OGWs are hydrostatic. With the increase in the horizontal resolution of state-of-the-art numerical models, unresolved OGWs are of smaller horizontal scale and more influenced by nonhydrostatic effects (NHE), thus challenging use of the hydrostatic assumption. Based on the analytical formulas for nonhydrostatic OGWs derived in our recent study, the orographic gravity wave drag (OGWD) parameterization scheme in the Model for Prediction Across Scales is revised by accounting for NHE. Global simulations with 30-km horizontal resolution are conducted to investigate NHE on the momentum transport of OGWs and their impacts on the large-scale circulation in boreal winter. NHE are evident in regions of complex terrain such as the Tibetan Plateau, Rocky Mountains, southern Andes, and eastern Antarctica. The parameterized surface wave momentum flux can be either reduced or enhanced depending on the relative importance of NHE and model physics–dynamics interactions. The NHE corrections to the OGWD scheme significantly reduce the easterly biases in the polar stratosphere of the Northern Hemisphere, due to both weakened OGWD in the upper troposphere and lower stratosphere and suppressed upward propagation of resolved waves into the stratosphere. However, the revised OGWD scheme only has a weak influence on the large-scale circulation in the Southern Hemisphere during boreal winter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-23-0020.1