Deconvolutional networks
Building robust low and mid-level image representations, beyond edge primitives, is a long-standing goal in vision. Many existing feature detectors spatially pool edge information which destroys cues such as edge intersections, parallelism and symmetry. We present a learning framework where features...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2528 - 2535 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Building robust low and mid-level image representations, beyond edge primitives, is a long-standing goal in vision. Many existing feature detectors spatially pool edge information which destroys cues such as edge intersections, parallelism and symmetry. We present a learning framework where features that capture these mid-level cues spontaneously emerge from image data. Our approach is based on the convolutional decomposition of images under a spar-sity constraint and is totally unsupervised. By building a hierarchy of such decompositions we can learn rich feature sets that are a robust image representation for both the analysis and synthesis of images. |
---|---|
ISBN: | 1424469848 9781424469840 |
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2010.5539957 |