Maximum weight cliques with mutex constraints for video object segmentation

In this paper, we address the problem of video object segmentation, which is to automatically identify the primary object and segment the object out in every frame. We propose a novel formulation of selecting object region candidates simultaneously in all frames as finding a maximum weight clique in...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE Conference on Computer Vision and Pattern Recognition pp. 670 - 677
Main Authors Tianyang Ma, Latecki, L. J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we address the problem of video object segmentation, which is to automatically identify the primary object and segment the object out in every frame. We propose a novel formulation of selecting object region candidates simultaneously in all frames as finding a maximum weight clique in a weighted region graph. The selected regions are expected to have high objectness score (unary potential) as well as share similar appearance (binary potential). Since both unary and binary potentials are unreliable, we introduce two types of mutex (mutual exclusion) constraints on regions in the same clique: intra-frame and inter-frame constraints. Both types of constraints are expressed in a single quadratic form. We propose a novel algorithm to compute the maximal weight cliques that satisfy the constraints. We apply our method to challenging benchmark videos and obtain very competitive results that outperform state-of-the-art methods.
ISBN:9781467312264
1467312266
ISSN:1063-6919
DOI:10.1109/CVPR.2012.6247735