Remote Regulation of Membrane Channel Activity by Site‐Specific Localization of Lanthanide‐Doped Upconversion Nanocrystals

The spatiotemporal regulation of light‐gated ion channels is a powerful tool to study physiological pathways and develop personalized theranostic modalities. So far, most existing light‐gated channels are limited by their action spectra in the ultraviolet (UV) or visible region. Simple and innovativ...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 129; no. 11; pp. 3077 - 3081
Main Authors Ai, Xiangzhao, Lyu, Linna, Zhang, Yang, Tang, Yanxia, Mu, Jing, Liu, Fang, Zhou, Yixi, Zuo, Zhenghong, Liu, Gang, Xing, Bengang
Format Journal Article
LanguageEnglish
German
Published Weinheim Wiley Subscription Services, Inc 06.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The spatiotemporal regulation of light‐gated ion channels is a powerful tool to study physiological pathways and develop personalized theranostic modalities. So far, most existing light‐gated channels are limited by their action spectra in the ultraviolet (UV) or visible region. Simple and innovative strategies for the specific attachment of photoswitches on the cell surface without modifying or genetically encoding channel structures, and more importantly, that enable the remote activation of ion‐channel functions within near‐infrared (NIR) spectral window in living systems, remain a challenging concern. Herein, metabolic glycan biosynthesis is used to achieve site‐specific covalent attachment of near‐infrared‐light‐mediated lanthanide‐doped upconversion nanocrystals (UCNs) to the cell surface through copper‐free click cyclization. Upon irradiation with 808 nm light, the converted emission at 480 nm could activate a light‐gated ion channel, channelrhodopsins‐2 (ChR2), and thus remotely control the cation influx. This unique strategy provides valuable insights on the specific regulation membrane‐associated activities in vivo. Leuchtsignal: NIR‐vermittelte Lanthanoid‐dotierte Aufwärtskonvertierungs‐Nanokristalle (UCNs) können ortsspezifisch und kovalent auf Zellmembranen verankert werden. Bei Anregung (Ex.) aktiviert die von ihnen emittierte blaue Strahlung (Em.) einen lichtgesteuerten Ionenkanal. So lässt sich der Kationen‐Influx steuern; ionenvermittelte Signalwege der Apoptose in lebenden Zellen und Zebrafischen wurden manipuliert.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201612142