Well-ordered Au@Ag NBPs/SiO2 nanoarray for sensitive detection of chloramphenicol via DNAzyme-assisted SERS sensing
Misuse of chloramphenicol (CAP) can lead to severe food safety issues. Therefore, the accurate and sensitive detection of CAP residues is important for public health. Herein, a convenient and reliable interfacial self-assembly technique was used to form a uniform Au@Ag nanobipyramids (NBPs) film on...
Saved in:
Published in | Food chemistry Vol. 454; p. 139806 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Misuse of chloramphenicol (CAP) can lead to severe food safety issues. Therefore, the accurate and sensitive detection of CAP residues is important for public health. Herein, a convenient and reliable interfacial self-assembly technique was used to form a uniform Au@Ag nanobipyramids (NBPs) film on an ordered SiO2 nanosphere array (SiO2 NS), which served as a Raman-enhanced substrate. In conjunction with a deoxyribonucleic acid enzyme–induced signal amplification strategy, we developed a novel surface-enhanced Raman scattering (SERS) biosensor for the selective and sensitive detection of CAP. The biosensor exhibited a detection limit of 6.42 × 10−13 mol·L−1 and a detection range of 1.0 × 10−12–1.0 × 10−6 mol·L−1. The biosensor could detect CAP in spiked milk samples with a high accuracy, and its recovery rates ranged from 97.88% to 107.86%. The as-developed biosensor with the advantages of high sensitivity and high selectivity offers a new strategy for the rapid, reliable and sensitive detection of CAP, rendering it applicable to food safety control.
•DNA enzyme amplification strategy was proposed to improve sensitivity.•3D Au@Ag NBPs/SiO2 substrate was developed to improve uniformity and sensitivity.•The CAP based sensor achieved a low detection limit and a wide detection range. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.139806 |