Low contact resistivity at the 10−4 Ω cm2 level fabricated directly on n-type AlN
Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance challenges due to high contact resistivity exceeding 10−1 Ω cm2. In this Letter, we demonstrate achieving a low contact resistivity at the 10−4 ...
Saved in:
Published in | Applied physics letters Vol. 125; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
19.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance challenges due to high contact resistivity exceeding 10−1 Ω cm2. In this Letter, we demonstrate achieving a low contact resistivity at the 10−4 Ω cm2 level via refined metallization processes applied directly to n-AlN. The minimum contact resistivity reached 5.82 × 10−4 Ω cm2. Our analysis reveals that the low contact resistance primarily results from the stable TiAlTi/AlN interface, resilient even under rigorous annealing conditions, which beneficially forms a thin Al–Ti–N interlayer, promotes substantial nitrogen vacancies, enhances the net carrier density at the interface, and lowers the contact barrier. This work marks a significant milestone in realizing superior Ohmic contacts for n-type AlN, paving the way for more efficient power electronic and optoelectronic devices. |
---|---|
AbstractList | Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance challenges due to high contact resistivity exceeding 10−1 Ω cm2. In this Letter, we demonstrate achieving a low contact resistivity at the 10−4 Ω cm2 level via refined metallization processes applied directly to n-AlN. The minimum contact resistivity reached 5.82 × 10−4 Ω cm2. Our analysis reveals that the low contact resistance primarily results from the stable TiAlTi/AlN interface, resilient even under rigorous annealing conditions, which beneficially forms a thin Al–Ti–N interlayer, promotes substantial nitrogen vacancies, enhances the net carrier density at the interface, and lowers the contact barrier. This work marks a significant milestone in realizing superior Ohmic contacts for n-type AlN, paving the way for more efficient power electronic and optoelectronic devices. |
Author | Li, Xiaohang Sarkar, Biplab Lai, Zhiping Tang, Xiao Liu, Zhiyuan Nong, Mingtao Liu, Tingang Wu, Ying Cao, Haicheng Li, Jiaqiang |
Author_xml | – sequence: 1 givenname: Haicheng surname: Cao fullname: Cao, Haicheng organization: 4Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India – sequence: 2 givenname: Mingtao surname: Nong fullname: Nong, Mingtao organization: Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Jiaqiang surname: Li fullname: Li, Jiaqiang organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Xiao surname: Tang fullname: Tang, Xiao organization: Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Tingang surname: Liu fullname: Liu, Tingang organization: Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Zhiyuan surname: Liu fullname: Liu, Zhiyuan organization: Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Biplab surname: Sarkar fullname: Sarkar, Biplab organization: Department of Electronics and Communication Engineering, Indian Institute of Technology – sequence: 8 givenname: Zhiping surname: Lai fullname: Lai, Zhiping organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Ying surname: Wu fullname: Wu, Ying organization: 4Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India – sequence: 10 givenname: Xiaohang surname: Li fullname: Li, Xiaohang organization: Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST) |
BookMark | eNp9kM1KAzEUhYNUsK0ufIOAK4Vp8z8zy1L8g6IbBXdDJpNgynSmJmlldi5161v4Mj5En8RI60bEzTlc-M653DsAvaZtNADHGI0wEnTMR4hgnjK2B_oYpWlCMc56oI8QoonIOT4AA-_nceSE0j54mLXPULVNkCpAp731wa5t6KAMMDxqiNHm9Z1tXt4-P6KoBYG1XusaGlk6q2TQFays0yrUHWwb2CShW2o4qW8Owb6RtddHOx-C-4vzu-lVMru9vJ5OZokihISouSmF0pihMpdaCEUrydIyNVmeYVNihQQzVCGjjWA45UyqjMuUmYpEl3QITra9S9c-rbQPxbxduSauLCjKOeGCMhSp8ZZSrvXeaVMoG2Sw8XAnbV1gVHy_r-DF7n0xcforsXR2IV33J3u2Zf1P6z_wF6RKgPs |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_mssp_2025_109270 crossref_primary_10_3390_solids5040044 |
Cites_doi | 10.1002/aelm.201600501 10.1007/s11664-009-0924-y 10.1063/1.5124936 10.1002/pssc.201600243 10.1088/1361-6641/ac8e8f 10.1364/PRJ.391075 10.1109/TED.2021.3140193 10.1063/1.2458399 10.1016/j.apsusc.2016.04.016 10.3390/cryst12060826 10.1116/1.5129803 10.1063/1.5108529 10.1063/1.4963860 10.1063/1.2008361 10.1038/nature04760 10.3390/cryst11081006 10.7567/JJAP.55.05FL03 10.35848/1882-0786/acdcde 10.1063/5.0124589 10.1021/acs.cgd.4c00292 10.1063/5.0156691 10.1063/1.4993447 10.1063/1.2980038 10.1088/0268-1242/12/10/020 10.35848/1882-0786/ac702e 10.1116/6.0003062 10.1109/LPT.2023.3288216 10.1016/j.sse.2023.108752 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0215744 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0215744 apl |
GrantInformation_xml | – fundername: KAUST Competitive Research Grants grantid: URF/1/4374-01-01 – fundername: KAUST Competitive Research Grants grantid: URF/1/3437-01-01 – fundername: KAUST Baseline Fund grantid: BAS/1/1664-01-01 – fundername: KAUST Competitive Research Grants grantid: URF/1/3771-01-01 – fundername: KAUST Baseline Fund grantid: BAS/1/1626-01-01 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c222t-c29fb6ce140b9ae66c3da47b7f8981fb1c064f3c0fef641754ac85a74fd285aa3 |
IEDL.DBID | AJDQP |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 16:56:04 EDT 2025 Thu Jul 03 08:22:33 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Thu Aug 22 06:12:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published open access through an agreement withKing Abdullah University of Science and Technology127355 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c222t-c29fb6ce140b9ae66c3da47b7f8981fb1c064f3c0fef641754ac85a74fd285aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5646-0231 0000-0002-0138-7206 0000-0001-6829-1690 0000-0001-9555-6009 0000-0002-7919-1107 0009-0000-5672-2932 0009-0005-5649-2678 0000-0002-8690-2069 0000-0003-0074-0626 0000-0002-4434-365X |
OpenAccessLink | http://dx.doi.org/10.1063/5.0215744 |
PQID | 3095256340 |
PQPubID | 2050678 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0215744 proquest_journals_3095256340 crossref_primary_10_1063_5_0215744 scitation_primary_10_1063_5_0215744 |
PublicationCentury | 2000 |
PublicationDate | 20240819 2024-08-19 |
PublicationDateYYYYMMDD | 2024-08-19 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240819 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Yang, Xiong, Lin, Li, Yang, Luo (c22) 2023 Cho, Rass, Mogilatenko, Kunkel, Unger, Schilling, Wernicke, Einfeldt (c23) 2023 Taniyasu, Kasu, Makimoto (c5) 2006 France, Xu, Chen, Chandrasekaran, Moustakas (c11) 2007 Mori, Takeda, Kusafuka, Iwaya, Takeuchi, Kamiyama, Akasaki, Amano (c26) 2016 Doolittle, Matthews, Ahmad, Motoki, Lee, Ghosh, Marshall, Tang, Manocha, Yoder (c3) 2023 Niranjan, Rao, Muralidharan, Sen, Nath (c21) 2022 Cho, Mogilatenko, Susilo, Ostermay, Seifert, Wernicke, Kneissl, Einfeldt (c13) 2022 Tsao, Chowdhury, Hollis, Jena, Johnson, Jones, Kaplar, Rajan, Van de Walle, Bellotti, Chua, Collazo, Coltrin, Cooper, Evans, Graham, Grotjohn, Heller, Higashiwaki, Islam, Juodawlkis, Khan, Koehler, Leach, Mishra, Nemanich, Pilawa‐Podgurski, Shealy, Sitar, Tadjer, Witulski, Wraback, Simmons (c1) 2017 Nagata, Senga, Iwaya, Takeuchi, Kamiyama, Akasaki (c12) 2016 Greco, Iucolano, Roccaforte (c16) 2016 Razzak, Hwang, Coleman, Xue, Sohel, Bajaj, Zhang, Lu, Khan, Rajan (c7) 2019 Srivastava, Hwang, Islam, Balakrishnan, Adivarahan, Khan (c27) 2009 Bagheri, Quiñones-Garcia, Khachariya, Rathkanthiwar, Reddy, Kirste, Mita, Tweedie, Collazo, Sitar (c4) 2022 Lapeyrade, Alamé, Glaab, Mogilatenko, Unger, Kuhn, Wernicke, Vogt, Knauer, Zeimer, Einfeldt, Weyers, Kneissl (c25) 2017 Maeda, Page, Nomoto, Toita, Xing, Jena (c28) 2022 Miller, Lin, Mohney (c10) 2008 Dupuis (c2) 2023 Ji, Liu, He, Fang, Yan, Chen, Shen, Sun, Zhang, Sun (c20) 2024 Zollner, Yao, Wang, Wu, Iza, Speck, DenBaars, Nakamura (c24) 2021 Bajaj, Akyol, Krishnamoorthy, Zhang, Rajan (c8) 2016 Okumura, Watanabe, Shibata (c19) 2023 Hiroki, Kumakura (c6) 2019 Sulmoni, Mehnke, Mogilatenko, Guttmann, Wernicke, Kneissl (c9) 2020 Hong, Lee, MacKenzie, Donovan, Abernathy, Pearton, Zolper (c17) 1997 Van Daele, Van Tendeloo, Ruythooren, Derluyn, Leys, Germain (c18) 2005 Baca, Armstrong, Klein, Allerman, Douglas, Kaplar (c14) 2020 Zhang, Wu, Miao, Wu, Xing, Wang (c15) 2022 (2024082123290806600_c13) 2022; 37 (2024082123290806600_c2) 2023; 41 (2024082123290806600_c4) 2022; 132 (2024082123290806600_c28) 2022; 15 (2024082123290806600_c14) 2020; 38 (2024082123290806600_c17) 1997; 12 (2024082123290806600_c15) 2022; 12 (2024082123290806600_c12) 2016; 14 (2024082123290806600_c27) 2009; 38 (2024082123290806600_c5) 2006; 441 (2024082123290806600_c10) 2008; 104 (2024082123290806600_c1) 2017; 4 (2024082123290806600_c26) 2016; 55 (2024082123290806600_c7) 2019; 115 (2024082123290806600_c19) 2023; 16 (2024082123290806600_c22) 2023; 208 (2024082123290806600_c11) 2007; 90 (2024082123290806600_c20) 2024; 24 (2024082123290806600_c9) 2020; 8 (2024082123290806600_c23) 2023; 35 (2024082123290806600_c25) 2017; 122 (2024082123290806600_c3) 2023; 123 (2024082123290806600_c21) 2022; 69 (2024082123290806600_c24) 2021; 11 (2024082123290806600_c6) 2019; 115 (2024082123290806600_c18) 2005; 87 (2024082123290806600_c8) 2016; 109 (2024082123290806600_c16) 2016; 383 |
References_xml | – start-page: 061007 year: 2022 ident: c28 publication-title: Appl. Phys. Express – start-page: 1381 year: 2020 ident: c9 publication-title: Photonics Res. – start-page: 020803 year: 2020 ident: c14 publication-title: J. Vac. Sci. Technol. A – start-page: 324 year: 2016 ident: c16 publication-title: Appl. Surf. Sci. – start-page: 915 year: 2023 ident: c23 publication-title: IEEE Photonics Technol. Lett. – start-page: 185703 year: 2022 ident: c4 publication-title: J. Appl. Phys. – start-page: 1600501 year: 2017 ident: c1 publication-title: Adv. Electron. Mater. – start-page: 826 year: 2022 ident: c15 publication-title: Crystals – start-page: 061905 year: 2005 ident: c18 publication-title: Appl. Phys. Lett. – start-page: 1006 year: 2021 ident: c24 publication-title: Crystals – start-page: 192104 year: 2019 ident: c6 publication-title: Appl. Phys. Lett. – start-page: 1600243 year: 2016 ident: c12 publication-title: Phys. Status Solidi C – start-page: 325 year: 2006 ident: c5 publication-title: Nature – start-page: 1014 year: 2022 ident: c21 publication-title: IEEE Trans. Electron Devices – start-page: 125701 year: 2017 ident: c25 publication-title: J. Appl. Phys. – start-page: 060803 year: 2023 ident: c2 publication-title: J. Vac. Sci. Technol. B – start-page: 043502 year: 2019 ident: c7 publication-title: Appl. Phys. Lett. – start-page: 105016 year: 2022 ident: c13 publication-title: Semicond. Sci. Technol. – start-page: 05FL03 year: 2016 ident: c26 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 108752 year: 2023 ident: c22 publication-title: Solid-State Electron. – start-page: 062115 year: 2007 ident: c11 publication-title: Appl. Phys. Lett. – start-page: 1310 year: 1997 ident: c17 publication-title: Semicond. Sci. Technol. – start-page: 133508 year: 2016 ident: c8 publication-title: Appl. Phys. Lett. – start-page: 064005 year: 2023 ident: c19 publication-title: Appl. Phys. Express – start-page: 064508 year: 2008 ident: c10 publication-title: J. Appl. Phys. – start-page: 070501 year: 2023 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 2348 year: 2009 ident: c27 publication-title: J. Electron. Mater. – start-page: 3960 year: 2024 ident: c20 publication-title: Cryst. Growth Des. – volume: 4 start-page: 1600501 issue: 1 year: 2017 ident: 2024082123290806600_c1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600501 – volume: 38 start-page: 2348 issue: 11 year: 2009 ident: 2024082123290806600_c27 publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0924-y – volume: 115 start-page: 192104 issue: 19 year: 2019 ident: 2024082123290806600_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5124936 – volume: 14 start-page: 1600243 issue: 8 year: 2016 ident: 2024082123290806600_c12 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201600243 – volume: 37 start-page: 105016 issue: 10 year: 2022 ident: 2024082123290806600_c13 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ac8e8f – volume: 8 start-page: 1381 issue: 8 year: 2020 ident: 2024082123290806600_c9 publication-title: Photonics Res. doi: 10.1364/PRJ.391075 – volume: 69 start-page: 1014 issue: 3 year: 2022 ident: 2024082123290806600_c21 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3140193 – volume: 90 start-page: 062115 issue: 6 year: 2007 ident: 2024082123290806600_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2458399 – volume: 383 start-page: 324 year: 2016 ident: 2024082123290806600_c16 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.016 – volume: 12 start-page: 826 issue: 6 year: 2022 ident: 2024082123290806600_c15 publication-title: Crystals doi: 10.3390/cryst12060826 – volume: 38 start-page: 020803 issue: 2 year: 2020 ident: 2024082123290806600_c14 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5129803 – volume: 115 start-page: 043502 issue: 4 year: 2019 ident: 2024082123290806600_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5108529 – volume: 109 start-page: 133508 issue: 13 year: 2016 ident: 2024082123290806600_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963860 – volume: 87 start-page: 061905 issue: 6 year: 2005 ident: 2024082123290806600_c18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2008361 – volume: 441 start-page: 325 issue: 7091 year: 2006 ident: 2024082123290806600_c5 publication-title: Nature doi: 10.1038/nature04760 – volume: 11 start-page: 1006 issue: 8 year: 2021 ident: 2024082123290806600_c24 publication-title: Crystals doi: 10.3390/cryst11081006 – volume: 55 start-page: 05FL03 issue: 5S year: 2016 ident: 2024082123290806600_c26 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.55.05FL03 – volume: 16 start-page: 064005 issue: 6 year: 2023 ident: 2024082123290806600_c19 publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/acdcde – volume: 132 start-page: 185703 issue: 18 year: 2022 ident: 2024082123290806600_c4 publication-title: J. Appl. Phys. doi: 10.1063/5.0124589 – volume: 24 start-page: 3960 issue: 9 year: 2024 ident: 2024082123290806600_c20 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.4c00292 – volume: 123 start-page: 070501 issue: 7 year: 2023 ident: 2024082123290806600_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0156691 – volume: 122 start-page: 125701 issue: 12 year: 2017 ident: 2024082123290806600_c25 publication-title: J. Appl. Phys. doi: 10.1063/1.4993447 – volume: 104 start-page: 064508 issue: 6 year: 2008 ident: 2024082123290806600_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.2980038 – volume: 12 start-page: 1310 issue: 10 year: 1997 ident: 2024082123290806600_c17 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/12/10/020 – volume: 15 start-page: 061007 issue: 6 year: 2022 ident: 2024082123290806600_c28 publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ac702e – volume: 41 start-page: 060803 issue: 6 year: 2023 ident: 2024082123290806600_c2 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0003062 – volume: 35 start-page: 915 issue: 17 year: 2023 ident: 2024082123290806600_c23 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2023.3288216 – volume: 208 start-page: 108752 year: 2023 ident: 2024082123290806600_c22 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2023.108752 |
SSID | ssj0005233 |
Score | 2.4790447 |
Snippet | Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum nitride Carrier density Contact resistance Electrical resistivity Interlayers Metallizing Optoelectronic devices |
Title | Low contact resistivity at the 10−4 Ω cm2 level fabricated directly on n-type AlN |
URI | http://dx.doi.org/10.1063/5.0215744 https://www.proquest.com/docview/3095256340 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEB60IupB_MVqlcV68BJtuptNciz-IKUtigq9hd3N7qmmYiPizaNefQtfxofokzjbJDWCgpfNZRLCzA7fNzuzMwAHjVCYGI3r6DgQDhMMXSpwuRMbGcrQ6EC79nJyt8cvblm77_VnoP5HBp_TY-_IwpLP2CzMNZEcBxWYa7VPry5LlRyUFoPxODKGooFQ-eWfsPPNJRcQaLKcdwlWzldgOeeDpJUZcBVmdLIGS6UugWswP6nSVKN16HeGT8QWlwuVEoyTrX_a2Q9EpASJHHEb49d3Nn55-_zARd01ycDWBBEj5GQakI5JBmGDZzJMSOLYA1jSGvQ24Pb87ObkwslHIzgKAT3FNTSSK43hkQyF5lzRWDBf-iZAVRvpKqQahqqG0YYzpAhMqMATPjNxE5-CbkIlGSZ6C4jwkPXEWgdcBijFMYJiLFYYZHNNtfCrcFhoLip0ZcdXDKJJ_prTyItyJVdhfyp6nzXL-E2oVqg_yv1lFFFkevgblDWqUJ-a5O-PbP9LagcWm8hB7BGwG9agkj486l3kEKncwz102u1c7-V76Qu_dMUb |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEB60IupB_MX6u6gHL7FNd7NJjsUfqtaioNBb2N3sghDTYiPizaNefQtfxofwSZxtEq2g4GVzmYRhJsP3ze7sDMBuPRQmRuc6Og6EwwTDkApc7sRGhjI0OtCuvZx83uGta3ba9bpFbY69C4NKDPbFTT9vEdxPaoUBnQQ5533_u-EApzVv3wKWz9g4TGA2zoMKTDRPDy8vRmo8KC1H5nHkEmVrodGXfwLSN8ucQgjKT8NHAOd4DmYLpkiauWbzMKbTBZgZ6R-4AJPD-k01WIRuu_dAbNm5UBnBDNpGrp0KQURGkOIRt_7x_Mo-nl7e33BRtw2S2GohYoQczgnSMcnBLXkkvZSkjt2aJc2kswTXx0dXBy2nGJrgKIT6DNfQSK40Jk4yFJpzRWPBfOmbAJ1gpKuQhBiq6kYbzpA8MKECT_jMxA18CroMlbSX6hUgwkM-FGsdcBmgFMfcirFYYfrNNdXCr8JeabmotJUdbJFEw5NtTiMvKoxche0v0X7eRuM3ofXS_FERSYOIIgdENSirV2HnyyV_f2T1X1JbMNW6Om9H7ZPO2RpMN5Cp2I1iN1yHSnZ3rzeQaWRys_ifPgEZoNCI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+contact+resistivity+at+the+10%E2%88%924+%CE%A9+cm2+level+fabricated+directly+on+n-type+AlN&rft.jtitle=Applied+physics+letters&rft.au=Cao%2C+Haicheng&rft.au=Nong%2C+Mingtao&rft.au=Li%2C+Jiaqiang&rft.au=Tang%2C+Xiao&rft.date=2024-08-19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=125&rft.issue=8&rft_id=info:doi/10.1063%2F5.0215744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0215744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |