Low contact resistivity at the 10−4 Ω cm2 level fabricated directly on n-type AlN
Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance challenges due to high contact resistivity exceeding 10−1 Ω cm2. In this Letter, we demonstrate achieving a low contact resistivity at the 10−4 ...
Saved in:
Published in | Applied physics letters Vol. 125; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
19.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ultrawide bandgap aluminum nitride (AlN) stands out as a highly attractive material for high-power electronics. However, AlN power devices face performance challenges due to high contact resistivity exceeding 10−1 Ω cm2. In this Letter, we demonstrate achieving a low contact resistivity at the 10−4 Ω cm2 level via refined metallization processes applied directly to n-AlN. The minimum contact resistivity reached 5.82 × 10−4 Ω cm2. Our analysis reveals that the low contact resistance primarily results from the stable TiAlTi/AlN interface, resilient even under rigorous annealing conditions, which beneficially forms a thin Al–Ti–N interlayer, promotes substantial nitrogen vacancies, enhances the net carrier density at the interface, and lowers the contact barrier. This work marks a significant milestone in realizing superior Ohmic contacts for n-type AlN, paving the way for more efficient power electronic and optoelectronic devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0215744 |