L-arabinose isomerase from Lactobacillus fermentum C6: Enzymatic characteristics and its recombinant Bacillus subtilis whole cells achieving a significantly increased production of D-tagatose

L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconv...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 278; no. Pt 1; p. 134753
Main Authors Ma, Donglin, Qiu, Lu, Wang, Xiaofang, Li, Lilang, Peng, Shuaiying, Liao, Yan, Li, Kuntai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B. subtilis WB600-pMA5-LAI achieved a maximum specific activity of L-AI-C6 (232.65 ± 15.54 U/mg protein) under cultivation in LB medium at 28 °C for 40 h. The recombinant L-AI-C6 was purified, and enzymatic characteristics test showed its optimum reaction temperature and pH at 60 °C and 8.0, respectively. In addition, L-AI-C6 exhibited good stability within the pH range of 5.5–9.0. By using B. subtilis WB600-pMA5-LAI cells as whole-cell catalyst, the highest D-tagatose yield reached 42.91 ± 0.28 % with D-galactose as substrate, which was 2.41 times that of L. fermentum C6 (17.79 ± 0.11 %). This suggested that the cloning and heterologous expression of L-AI-C6 was an effective strategy for improving D-tagatose conversion by whole-cell catalysis. In brief, the present study demonstrated that the reaction temperature, pH, and stability of L-AI-C6 from L. fermentum C6 meet the demands of industrial application, and the constructed B. subtilis WB600-pMA5-LAI shows promising potential for the whole-cell biotransformation of D-tagatose. [Display omitted] •L-AI-C6 originates from the GRAS Lactobacillus fermentum C6.•L-AI-C6 exhibits excellent enzymatic properties for industrial application.•The engineered B. subtilis shows promising whole-cell catalytic activity on D-tagatose production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.134753