A practical and robust approach for solving the multi‐compartment vehicle routing problem under demand uncertainty using machine learning

The multi‐compartment vehicle routing problem is an extension of the vehicle routing problem and consists of designing a set of routes to perform the collection or delivery of different product types from customers with minimal costs. The product types are incompatible with each other and must be tr...

Full description

Saved in:
Bibliographic Details
Published inNetworks Vol. 84; no. 3; pp. 300 - 325
Main Authors Chamurally, Shabanaz, Rieck, Julia
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The multi‐compartment vehicle routing problem is an extension of the vehicle routing problem and consists of designing a set of routes to perform the collection or delivery of different product types from customers with minimal costs. The product types are incompatible with each other and must be transported separately in multiple compartments. In practice, several uncertainties such as uncertainty in demands can arise, where the exact demand of customers is not known at the time of planning. To deal with these uncertainties, decision‐makers have to rely on robust solutions. A solution is considered robust when it can resist perturbations in every possible demand scenario as much as possible. In the day to day business of most logistic companies, historical data about each customer can be stored and used to make intelligent decisions regarding the expected demands. In this article, we propose an adaptive large neighborhood search for solving the robust multi‐compartment vehicle routing problem under demand uncertainty and present a robust solution approach for the problem in practical settings by employing machine learning. We show that by using our approach, the solutions obtained have lower recourse costs and have a lower gap between expected and actual costs, which is a favorable outcome to have in practice.
ISSN:0028-3045
1097-0037
DOI:10.1002/net.22231