Randomized Dimensionality Reduction for k -Means Clustering

We study the topic of dimensionality reduction for k-means clustering. Dimensionality reduction encompasses the union of two approaches: 1) feature selection and 2) feature extraction. A feature selection-based algorithm for k-means clustering selects a small subset of the input features and then ap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 61; no. 2; pp. 1045 - 1062
Main Authors Boutsidis, Christos, Zouzias, Anastasios, Mahoney, Michael W., Drineas, Petros
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2014.2375327

Cover

Loading…
More Information
Summary:We study the topic of dimensionality reduction for k-means clustering. Dimensionality reduction encompasses the union of two approaches: 1) feature selection and 2) feature extraction. A feature selection-based algorithm for k-means clustering selects a small subset of the input features and then applies k-means clustering on the selected features. A feature extraction-based algorithm for k-means clustering constructs a small set of new artificial features and then applies k-means clustering on the constructed features. Despite the significance of k-means clustering as well as the wealth of heuristic methods addressing it, provably accurate feature selection methods for k-means clustering are not known. On the other hand, two provably accurate feature extraction methods for k-means clustering are known in the literature; one is based on random projections and the other is based on the singular value decomposition (SVD). This paper makes further progress toward a better understanding of dimensionality reduction for k-means clustering. Namely, we present the first provably accurate feature selection method for k-means clustering and, in addition, we present two feature extraction methods. The first feature extraction method is based on random projections and it improves upon the existing results in terms of time complexity and number of features needed to be extracted. The second feature extraction method is based on fast approximate SVD factorizations and it also improves upon the existing results in terms of time complexity. The proposed algorithms are randomized and provide constant-factor approximation guarantees with respect to the optimal k-means objective value.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2375327