Study on Heat Transfer Characteristics of Jet Impingement of Turbine Bending Surface
The architecture of aeroengine air-cooling system channels is notably intricate, with impingement heat transfer standing out as a critical process amidst the complexity. This study delves into the casing annular cavity’s structure, examining the influence of flow and structural parameters on heat tr...
Saved in:
Published in | Aerospace Vol. 11; no. 7; p. 554 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The architecture of aeroengine air-cooling system channels is notably intricate, with impingement heat transfer standing out as a critical process amidst the complexity. This study delves into the casing annular cavity’s structure, examining the influence of flow and structural parameters on heat transfer characteristics. Experimental findings have revealed a trend towards more uniform temperature distributions across the impingement target plate as the relative impingement distance (H/d) increases, under a constant impingement Reynolds number (Rej). Notably, an impingement angle (β) of 90° yields optimal heat transfer effects on the target surface. Furthermore, a higher impingement hole consistency (Is) correlates with a lower and more uniform temperature distribution across the target plate. Additionally, escalating the crossflow ratio (mc/m) results in a decline in the temperature at the impingement stagnation point and a corresponding rise in the heat transfer coefficient. |
---|---|
ISSN: | 2226-4310 2226-4310 |
DOI: | 10.3390/aerospace11070554 |