A two-step linear inversion of two-dimensional electrical conductivity

We introduce a novel approach to the inversion of two-dimensional distributions of electrical conductivity illuminated by line sources. The algorithm stems from the newly developed extended Born approximation (see J. Geophys. Res., vol.98, no.B2, p.1759, 1993), which sums in a simple analytical expr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 43; no. 4; pp. 405 - 415
Main Authors Torres-Verdin, C., Habashy, T.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.1995
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a novel approach to the inversion of two-dimensional distributions of electrical conductivity illuminated by line sources. The algorithm stems from the newly developed extended Born approximation (see J. Geophys. Res., vol.98, no.B2, p.1759, 1993), which sums in a simple analytical expression an infinitude of terms contained in the Neumann series expansion of the electric field resulting from multiple scattering. Comparisons of numerical performance against a finite-difference code show that the extended Born approximation remains accurate up to conductivity contrasts of 1:1000 with respect to a homogeneous background, even with large-size scatterers and for a wide frequency range. Moreover, the new approximation is nearly as computationally efficient as the first-order Born approximation. Most importantly, we show that the mathematical form of the extended Born approximation allows one to express the nonlinear inversion of electromagnetic fields scattered by a line source as the sequential solution of two Fredholm integral equations. We compare this procedure against a more conventional iterative approach applied to a limited-angle tomography experiment. Our numerical tests show superior CPU time performance of the two-step linear inversion process.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/8.376039