An Extremal Property of Turán Graphs
Let ${\cal F}_{n,t_r(n)}$ denote the family of all graphs on $n$ vertices and $t_r(n)$ edges, where $t_r(n)$ is the number of edges in the Turán's graph $T_r(n)$ – the complete $r$-partite graph on $n$ vertices with partition sizes as equal as possible. For a graph $G$ and a positive integer $\...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 17; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
10.12.2010
|
Online Access | Get full text |
Cover
Loading…
Summary: | Let ${\cal F}_{n,t_r(n)}$ denote the family of all graphs on $n$ vertices and $t_r(n)$ edges, where $t_r(n)$ is the number of edges in the Turán's graph $T_r(n)$ – the complete $r$-partite graph on $n$ vertices with partition sizes as equal as possible. For a graph $G$ and a positive integer $\lambda$, let $P_G(\lambda)$ denote the number of proper vertex colorings of $G$ with at most $\lambda$ colors, and let $f(n,t_r(n),\lambda) = \max\{P_G(\lambda):G \in {\cal F}_{n,t_r(n)}\}$. We prove that for all $n\ge r\ge 2$, $f(n,t_r(n),r+1) = P_{T_r(n)}(r+1)$ and that $T_r(n)$ is the only extremal graph. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/442 |