Etanercept Mitigated Renal Injury in Male Rats Undergoing Global Renal Ischemia-Reperfusion

Introduction: The kidneys are vulnerable to injury from ischemia-reperfusion (IR), a process that triggers inflammation and apoptosis, primarily mediated by tumor necrosis factor (TNF)-alpha. Numerous studies have investigated renal damage in this context. Etanercept, a soluble receptor for TNF-alph...

Full description

Saved in:
Bibliographic Details
Published inAzerbaijan Pharmaceutical and Pharmacotherapy Journal Vol. 22; no. 1; pp. 13 - 17
Main Authors Abbas, Ashwaq Najemaldeen, Mahdi, Fatimah Mohammed Saeed, Abed, Aumaima Tariq, Hassan, Saif M
Format Journal Article
LanguageEnglish
Published Baku Azerbaijan Medical University 2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Introduction: The kidneys are vulnerable to injury from ischemia-reperfusion (IR), a process that triggers inflammation and apoptosis, primarily mediated by tumor necrosis factor (TNF)-alpha. Numerous studies have investigated renal damage in this context. Etanercept, a soluble receptor for TNF-alpha, has demonstrated anti-inflammatory and anti-apoptotic properties. This study aims to assess the potential of etanercept in mitigating experimental renal IR injury and its capacity to protect against widespread renal ischemia/reperfusion injury. Methods: Male Sprague-Dawley (SD) rats were classified into four groups: sham, DMSO-treated, etanercept-treated, DMSO-treated IR, and etanercept-treated IR groups. After 24 hours following IR injury, renal levels of TNF-alpha and TERs (Toll-like receptors) were assessed using EEISA and IHC methods, respectively. Histopathological analysis was employed to quantify the extent of renal cell injury. Results: Etanercept treatment significantly lowered tissue levels of TNF-alpha and TLRs in IR-damaged rats compared to DMSO-treated IR rats. Kidneys of DMSO-treated IR rats exhibited substantially elevated levels of TNF-alpha and TLRs when compared to DMSO-treated sham rats. Conversely, etanercept-treated IR rats displayed significantly reduced levels of TNF-alpha and TLRs compared to DMSO-treated IR rats. Pre-treatment with etanercept significantly alleviated the extent of damage in IR-injured rats compared to the control and DMSO groups. Etanercept further promoted the downregulation of TLRs and TNF-alpha, thereby enhancing resistance to renal damage during IR. Conclusion: In conclusion, etanercept shows promise in providing protection against renal ischemia-reperfusion injury by mitigating inflammation and apoptosis, as evidenced by reductions in TNF-alpha and TLR levels. This suggests its potential as a therapeutic intervention to mitigate renal damage resulting from ischemia-reperfusion injury.
ISSN:1994-1951
DOI:10.61336/appj/22-1-04