A highly specific chalcone derivative grafted ethylcellulose fluorescent probe for rapid and sensitive detection of Al3+ in actual environmental and food samples

Al3+ is commonly utilized in daily life, however, the excessive accumulation of Al3+ within organisms can result in severe health problems. Herein, a highly efficient fluorescent probe EC-HTC for Al3+ was synthesized through chemical modification of ethyl cellulose. This probe exhibited a significan...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 252; p. 126475
Main Authors Zhou, Guocheng, Zhang, Zilong, Meng, Zhiyuan, Qian, Cheng, Li, Mingxin, Wang, Zhonglong, Yang, Yiqin
Format Journal Article
LanguageEnglish
Published 01.12.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Al3+ is commonly utilized in daily life, however, the excessive accumulation of Al3+ within organisms can result in severe health problems. Herein, a highly efficient fluorescent probe EC-HTC for Al3+ was synthesized through chemical modification of ethyl cellulose. This probe exhibited a significant fluorescence enhancement response to Al3+, and it interestingly also possessed an obvious aggregation-induced emission (AIE) effect. The detection limit of probe EC-HTC for Al3+ was as low as 0.23 μM, and its pH usage range was as wide as 5-10. The complexation ratio of EC-HTC with Al3+ was determined to be 1:1 based on Job's plot, which was further confirmed by 1H NMR titration and HRMS analysis. Moreover, the probe EC-HTC was successfully employed for the determination of Al3+ in environmental and food samples. In addition, the probe EC-HTC compositing PS (polystyrene) electrostatic spun fiber membranes EHP with high specific surface area were prepared to achieve the rapid and portable detection of Al3+.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126475