Machine Learning-Based Decision-Making in Geriatrics: Aging Phenotype Calculator and Survival Prognosis
Aging is a natural process with varying effects. As we grow older, our bodies become more susceptible to aging-associated diseases. These diseases, individually or collectively, lead to the formation of distinct aging phenotypes. Identifying these aging phenotypes and understanding the complex inter...
Saved in:
Published in | Aging and disease |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.01.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Aging is a natural process with varying effects. As we grow older, our bodies become more susceptible to aging-associated diseases. These diseases, individually or collectively, lead to the formation of distinct aging phenotypes. Identifying these aging phenotypes and understanding the complex interplay between coexistent diseases would facilitate more personalized patient management, a better prognosis, and a prolonged lifespan. Many studies distinguish between successful aging and frailty. However, this simple distinction fails to reflect the diversity of underlying causes. In this study, we sought to establish the underlying causes of frailty and determine the patterns in which these causes converge to form aging phenotypes. We conducted a comprehensive geriatric examination, cognitive assessment, and survival analysis of 2,688 long-living adults (median age = 92 years). The obtained data were clustered and used as input data for the Aging Phenotype Calculator, a multiclass classification model validated on an independent dataset of 96 older adults. The accuracy of the model was assessed using the receiver operating characteristic curve and the area under the curve. Additionally, we analyzed socioeconomic factors that could contribute to specific aging patterns. We identified five aging phenotypes: non-frailty, multimorbid frailty, metabolic frailty, cognitive frailty, and functional frailty. For each phenotype, we determined the underlying diseases and conditions and assessed the survival rate. Additionally, we provided management recommendations for each of the five phenotypes based on their distinct features and associated challenges. The identified aging phenotypes may facilitate better-informed decision-making. The Aging Phenotype Calculator (ROC AUC = 92%) may greatly assist geriatricians in patient management. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2152-5250 2152-5250 |
DOI: | 10.14336/AD.2024.0120 |