Nanocrystalline V2O5,WO3/(CeO2-TiO2) and V2O5,WO3/(Y2O3-TiO2) catalysts with enhance thermal stability and activity in the reduction of NO with NH3 into N2
It was shown that V2O5, WO3/(CeO2-TiO2) and V2O5, WO3/(Y2O3 -TiO2) catalysts prepared with TiO2 support doped with ceria or yttria demonstrate the high catalytic activity and enhanced thermal stability in selective catalytic reduction NO by NH3 to N2 compared to the well-known industrial V2O5, WO3/T...
Saved in:
Published in | Materials today : proceedings Vol. 4; no. 11; pp. 11490 - 11494 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It was shown that V2O5, WO3/(CeO2-TiO2) and V2O5, WO3/(Y2O3 -TiO2) catalysts prepared with TiO2 support doped with ceria or yttria demonstrate the high catalytic activity and enhanced thermal stability in selective catalytic reduction NO by NH3 to N2 compared to the well-known industrial V2O5, WO3/TiO2 catalysts. It is due to the use the catalysts preparation of ceria or yttria doped TiO2 of anatase phase as a new support. Modification of TiO2 with ceria or yttria additives leads to the formation of nanocrystalline structure of anatase which is more stable under the heating at 850 °C compared of a pure anatase with regular crystal structure. Increasing the thermal stability of support leads to the high thermal stability of the supported V2O5, WO3/(CeO2 - TiO2) and V2O5, WO3/(Y2O3 -TiO2) catalysts characterized by the developed specific surface area. |
---|---|
ISSN: | 2214-7853 2214-7853 |
DOI: | 10.1016/j.matpr.2017.09.035 |