Flag-Transitive, Point-Imprimitive 2-Designs and Direct Products of Symmetric Groups
Consider the direct product of symmetric groups $S_c\times S_n$ and its natural action on $\mathcal{P}=C\times N$, where $|C|=c$ and $|N|=n$. We characterize the structure of 2-designs with point set $\mathcal{P}$ admitting flag-transitive, point-imprimitive automorphism groups $H\leq S_c\times S_n$...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 31; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
05.04.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Consider the direct product of symmetric groups $S_c\times S_n$ and its natural action on $\mathcal{P}=C\times N$, where $|C|=c$ and $|N|=n$. We characterize the structure of 2-designs with point set $\mathcal{P}$ admitting flag-transitive, point-imprimitive automorphism groups $H\leq S_c\times S_n$. As an example of its applications, we show that $H$ cannot be any subgroup of $D_{2c}\times S_n$ or $S_c\times D_{2n}$. Besides, some families of 2-designs admitting flag-transitive automorphism groups $S_c\times S_n$ are constructed by using complete bipartite graphs and cycles. Two families of these also admit flag-transitive, point-primitive automorphism groups $S_c\wr S_2,$ a family of which attain the Cameron-Praeger upper bound $v=(k-2)^2$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/11002 |