Investigation of an integrated solar thermochemical plant for hydrogen production using high-temperature molten salt

Abstract One of the most promising methods for producing hydrogen is the use of a water splitting process utilising the copper-chlorine (Cu-Cl) thermochemical cycle. The Cu-Cl cycle uses heat and electricity to produce hydrogen and oxygen from the decomposition of water molecules. In this paper, a n...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 1067; no. 1; p. 12100
Main Authors Sadeghi, S, Ghandehariun, S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract One of the most promising methods for producing hydrogen is the use of a water splitting process utilising the copper-chlorine (Cu-Cl) thermochemical cycle. The Cu-Cl cycle uses heat and electricity to produce hydrogen and oxygen from the decomposition of water molecules. In this paper, a new solar-powered integrated system is proposed which utilises (LiNaK) 2 CO 3 high-temperature carbonate molten salt as both a heat transfer fluid and a thermal energy storage medium to provide the required heat for the Cu-Cl cycle reactors and heat exchangers. The system is integrated with a supercritical regenerative steam Rankine cycle (SRC) which produces the required electricity for the electrolyser unit. Thermodynamic and economic analyses were conducted to evaluate the proposed system in terms of hydrogen production cost and system performance. For the base case, the integrated system was found to be capable of producing 823.71 kg/h of hydrogen. The system is optimised for two objective parameters, overall system thermal efficiency and the levelized cost of hydrogen. The results of optimisation analysis indicated that, for the optimal Pareto solution, the overall system thermal efficiency and levelized cost of hydrogen were 29.17%, and $7.58/kg of H 2 , respectively.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1067/1/012100