Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response
SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 microA. Phototransistors have an optical res...
Saved in:
Published in | Optics express Vol. 17; no. 7; pp. 5193 - 5204 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
30.03.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 microA. Phototransistors have an optical response of 50 AW-1 with a bandwidth of 0.2 GHz. These properties are related to carrier mobilities in the implanted Si waveguide. These detectors exhibit low optical absorption requiring lengths from <0.3 mm to 3 mm to absorb 50% of the incoming light. However, the high bandwidth, high quantum efficiency, low leakage current, and potentially high fabrication yields, make these devices very competitive when compared to other detector technologies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.17.005193 |