The highly dynamic satellitomes of cultivated wheat species
Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programs during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a...
Saved in:
Published in | Annals of botany |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
30.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programs during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a comparative analysis with the previously published bread wheat satellitome.
We revealed the durum wheat satellitome using the satMiner protocol which is based on consecutive rounds of clustering of Illumina reads by RepeatExplorer2, and estimated abundance and variation for each identified satDNA with RepeatMasker v4.0.5. We have also performed a deep satDNA families characterization including chromosomal location by Fluorescence In Situ Hybridization (FISH) in durum wheat and its comparison with FISH patterns in bread wheat. Basic Local Alignment Search Tool (BLAST®) was used for trailing each satDNA in the assembly of durum wheat genome through NCBI's Genome Data Viewer (GDW) and the genome assemblies of both species were compared. Sequence divergence and consensus turnover rate (CTR) between homologous satDNA families of durum and bread wheat were estimated using MEGA11.
This study reveals that in an exceedingly short period, significant qualitative and quantitative changes have occurred in the set of satellite DNAs (satDNAs) of both species, with expansions/contractions of the number of repeats and the loci per satellite, different in each species, and a high rate of sequence change for most of these satellites, in addition to the emergence/loss of satDNAs not shared between the two species analysed. These evolutionary changes in satDNA are common between species but what is truly remarkable and novel about this study is that these processes have taken place in less than the last ~8000 years separating the two species, indicating an accelerated evolution of their satDNAs.
These results, together with the relationship of many of these satellites with transposable elements and the polymorphisms they generate at the level of centromeres and subtelomeric regions of their chromosomes, are analysed and discussed in the context of the evolutionary origin of these species and the selection pressure exerted by man throughout the history of their cultivation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0305-7364 1095-8290 1095-8290 |
DOI: | 10.1093/aob/mcae132 |