Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis

A series of mutants bearing single amino acid substitutions often encountered in the catalase/peroxidase, KatG, from isoniazid-resistant isolates of Mycobacterium tuberculosis has been produced by site-directed mutagenesis. The resultant enzymes were overexpressed, purified and characterized. Replac...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 338; no. 3; pp. 753 - 760
Main Authors SAINT-JOANIS, Brigitte, SOUCHON, Hélène, WILMING, Martin, JOHNSSON, Kai, ALZARI, Pedro M., COLE, Stewart T.
Format Journal Article
LanguageEnglish
Published Portland Press 08.03.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of mutants bearing single amino acid substitutions often encountered in the catalase/peroxidase, KatG, from isoniazid-resistant isolates of Mycobacterium tuberculosis has been produced by site-directed mutagenesis. The resultant enzymes were overexpressed, purified and characterized. Replacing Cys-20 by Ser abolished disulphide-bridge formation, but did not affect either dimerization of the enzyme or catalysis. The substitution of Thr-275, which is probably involved in electron transfer from the haem, by proline resulted in a highly unstable enzyme with insignificant enzyme activities. The most commonly occurring substitution in drug-resistant clinical isolates is the replacement of Ser-315 by Thr; this lowered catalase and peroxidase activities by 50% and caused a significant decrease in the KatG-mediated inhibition of the activity of the NADH-dependent enoyl-[acyl-carrier protein] reductase, InhA, in vitro. The ability of this enzyme to produce free radicals from isoniazid was severely impaired, as judged by its loss of NitroBlue Tetrazolium reduction activity. Replacement of Leu-587 by Pro resulted in marked instability of KatG, indicating that the C-terminal domain is also important for structural and functional integrity.
Bibliography:PMCID: PMC1220113
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3380753